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Foreword
On behalf of the organising committee, we would like to welcome all speakers and delegates to the

2004 Irish Machine Vision and Image Processing Conference, which is being hosted jointly by the De-
partment of Computer Science and the Department of Electrical and Electronic Engineering, Trinity
College, Dublin.

IMVIP 2004 is the eighth conference in the series. Previous IMVIP conferences have been organised
by Magee College, University of Ulster (1997), NUI, Maynooth (1998), Dublin City University (1999),
Queens University of Belfast (2000), NUI, Maynooth (2001), NUI, Galway (2002 in conjunction with
Opto-Ireland) and University of Ulster, Coleraine (2003).

Once again IMVIP 2004 brings together theoreticians and practitioners, industrialists and academics
from numerous related disciplines involved in the processing and analysis of image-based information.
The initial call for papers was issued in January 2004. Sixty-five submissions were received and each of
these was blind reviewed by members of the programme committee. Of these Twenty-two papers were
accepted for oral presentation and a further fourteen were accepted for poster presentation.

We would like to thank the members of the programme committee for their help in the review process,
without whom a conference of this nature would not be possible. Thanks are also due to the local
organising committee including members of the Sigmedia Group; in particular Hugh Denman for his
excellent work in creating the electronic submission system and Dr. Sid-Ahmed Berrani for his careful
assistance in creating this proceedings.

We are grateful to our invited speakers for taking the time to present at the conference: Sarah Witt
(Sony Research UK), Dr. Bill Collis (The Foundry) and James Mahon (Agilent Technologies).

IMVIP 2004 is run in association with the Irish Pattern Recognition and Classification Society (IPRCS),
a member organisation of the International Association for Pattern Recognition (IAPR).
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naud Śeguier, SUPELEC Rennes - Team ETSN, Cesson-Sévigńe, France . . . . . . . . .192
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PROCESSING VIDEO ON A PLAYSTATION2 AND GPUS

Sarah Witt
Sony Broadcast & Professional Research Labs,

Jays Close,
Viables,

Basingstoke,
Hants,

RG22 4SB, UK
email: sarah.witt@eu.sony.com

Abstract
This paper describes research carried out at Sony BPRL to investigate the real-time video

processing capabilities of the Sony PlayStation2 and, more recently, consumer graphics cards (spe-
cifically Nvidia GeForceFX chipsets). The paper will illustrate some of the relative strengths of us-
ing these devices, but also some of the difficulties encountered. This paper will also contain a guide
to the PlayStation2 architecture, to show how it can be used for this kind of application.
Keywords: Video processing, Graphics processors

1  Introduction

We received a DTL-T10000 PlayStation2 (PS2) developer kit towards the end of 2000, kindly lent by Sony
Computer Entertainment Europe (SCEE) developer support in London. After some initial familiarisation
work, and some time spent on 2D text and still image rendering work, in mid-2001 we started investigating the
possibilities of using the PS2 for video applications.
Having worked on digital video effects devices before (large, expensive, hardware ones), it seemed like an in-
teresting challenge to me to try and implement 3D nonlinear effects, such as pageturn and ripple, in the PS2.
The fast 3D processing and graphics rendering power of the PS2 made it seem a suitable platform for such an
application. As a result, many interesting video effects, both 3D and otherwise, were successfully implemented
in the PS2 [1].
Recently, consumer graphics cards have become available that have similar, if not greater, potential to be able
to process video in many ways. Using Nvidia GeForceFX-based graphics cards with video outputs, we have
just started investigating implementing similar work in Graphics Processing Units (GPUs).

2  PlayStation2 Architecture

The following introduction to the PS2 architecture is by
no means exhaustive, but is meant as a background to ex-
plain the way the effects were created, and how it might
be used for other video processing applications.
The Sony PlayStation2 consists of four main processor
devices, as shown in Fig.1.
• The main CPU (the “Emotion Engine”, or EE)
• The rendering engine (the “Graphics Synthesiser”, or

GS)
• The IO Processor (or IOP)
• The Sound Processor (or SPU2)

SPU2

IOP EE GS

CD/
DVD

Mem
Cards

Contr-
ollers USB iLink

Video
Out

Audio Out

HDD/
Eth

Fig.1 PlayStation2 Architecture
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3  TheEmotion Engine

TheEmotion Engine, the main CPU in the PS2, is a 128-bit MIPS processor at its core. It operates at just short
of 300MHz, and is supplied with 32MB of RAM. While such figures may sound modest compared to current
desktop PCs, it is the PS2’s potential for parallel processing which gives it its power.
Most of the PS2 software is written in C (C++ is also possible), using provided libraries to drive all the devices,
but some parts are written in specific assembly languages, either because that was all that was possible, or to
maximise efficiency.
In addition to 128-bit multimedia instructions, which can operate on sixteen 8-bit numbers, or eight 16-bit num-
bers (or four 32-bit numbers, or even two 64-bit numbers) in parallel, the EE also contains a number of co-
processors, which can operate independently of, and in parallel with, the CPU core. These co-processors are
illustrated in Fig.2.

3.1  Vector Units

The EE contains two floating-point vector processing units. These are each capable of processing 4 32-bit
floating point elements of vectors in parallel. Most instructions (e.g. multiply accumulate) can be done in a
clock cycle. As a result, a 4-element vector can be multiplied by a 4x4 matrix in just four clock cycles. Using
four element vectors allows for homogenous 3D coordinates, so that translations, as well as rotations, can be
done by matrix multiplications. This means that a single “Local to Screen” matrix can be used, instead of sep-
arate translations and rotations.
Normally, the vector units are used independently from the EE core. Instructions and data are sent to the VUs,
and they are left to get on with their processing, and the results fetched on completion. The VU instructions
are normally written using VU assembly language, which may be hard to read and write, but can be very effi-
cient.
The two vector units differ in a number of ways. VU0 can be used as a co-processor directly from the EE core.
VU1, however, can send data directly to the GS (through the Graphics Interface, GIF). VU1 also has more
memory: 16kB each of data and instruction RAM, as opposed to VU0’s 4kB each.

3.2  Image Processing Unit (IPU)

The IPU is essentially most of an MPEG-1 and MPEG-2 decoder. It can decode MPEG Fixed/Variable Length
Coding (FLC/VLC) bitstreams, and perform Inverse Discrete Cosine Transforms (IDCTs) on the input coeffi-
cients to reproduce video. The only part of MPEG-1 and MPEG-2 decodes it is unable to do itself is the motion
compensation in long GOP MPEG (such as is found on DVDs). This is normally carried out in the EE core.

FPU

EE
Core

VU0 VU1

GIF

SIF
to IOP

to GS

ScratchPad
RAM (16kB)

DMA
Controller

to 32MB
RDRAM

IPU

Fig.2 Emotion Engine Architecture
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I-frame (Intra-frame) only MPEG can be decoded completely in the IPU, so this is the format we have used.
MPEG bitstream data can be DMA-ed to the IPU, and RGB video DMA-ed back on completion.

3.3  ScratchPad RAM

The 16kB ScratchPad RAM (SPR) is very fast access speed RAM (one clock cycle accesses, as opposed to
several clock cycles from main RAM). Data can be DMA-ed between it and main memory. It is very useful
for performing repetitive processes on large chunks of fixed-point data - for instance pixel colour operations,
such as a chromakey.

3.4  DMA Controller

The DMA controller can send data between main memory and the following:
• to/from the IOP
• to/from the IPU
• to/from the ScratchPad RAM
• to VU0
• to/from VU1
• to GIF (to GS)
As the DMA Controller works on 128-bit quadwords, it is capable of transferring data between these devices
very quickly, as well as being able to transfer in parallel to other operations running in the EE core. Conse-
quently large amounts of data can be moved about within the PS2 very quickly and easily - a useful asset for
video processing!

3.5  Graphics Interface (GIF)

The GIF receives data and commands from both the EE core and VU1, converts them for the physical interface
between the EE and GS, and sends them to the GS. This interface is capable of data rates of over 1GB/sec.
This allows fast transfer of textures to the GS - another feature useful for video. The GIF commands sent to
the GS include, for instance,xyzcoordinates, RGBA values, texture coordinates corresponding to thexyzco-
ordinates, and configuration commands for texture mapping, alpha-blending, etc.

4  TheGraphics Synthesiser

The GS is the rendering engine of the PS2. It can draw primitives, such as points, lines and polygons, according
to instructions and coordinates sent from the EE. Primitives can be Gouraud shaded, texture mapped, alpha-
blended and fogged. Z buffers can also be used to ensure that only primitives in front of those already visible
are drawn.  It operates at 150MHz, and can render 16 pixels per cycle (or eight per cycle if texture mapped).

4.1  GS Local RAM

The GS contains 4MB of embedded RAM. While this is much smaller than that found in typical PC graphics
cards, the fact that it is embedded in the chip means that it can be connected using very wide buses (2048 data
bits), thus allowing for parallel pixel rendering.  In fact the frame buffer bandwidth is nearly 40GB/sec.
The GS RAM would normally be divided into the following sections:
• Display frame/field buffer (16 or 32-bit RGBA)
• Draw frame/field buffer (16 or 32-bit RGBA)
• Z buffer (16, 24 or 32-bit)
• Texture buffer (16, 24 or 32-bit RGBA, or 4 or 8-bit indexes for Colour Look up Tables)
• Colour Look up Tables (CLUTs) (16 or 32-bit)
The divisions between these buffers are in fact arbitrary, and can change during a program, so that, for instance,
a draw buffer can temporarily swap with a texture buffer, etc. The draw and display buffers are effectively

3



double buffers, so that while one field is being rendered, the previous one can be displayed. They alternate
between fields.

4.2  Texture Mapping

Texture mapping requires a texture coordinate that corresponds to each vertex coordinate sent to the GS. As
each pixel is rendered, its corresponding texture pixel is read from the texture buffer and applied to the rendered
pixel. For intermediate texture coordinates, bilinear filtering between adjacent texture pixels (texels) can be
used.
Texture mapping can be done in the GS with or without perspective correction. Perspective correction produc-
es a much better effect when mapping a texture to a 3D shape. Without it, the texture appears to be mapped in
a flat, 2D way to the polygon coordinates. To perform perspective correction, as part of the “Local to Screen”
mapping done in the EE, the value (calledQ) used to normalise the homogenous 4-element vertex vectors is
sent to the GS. ThisQ value is an indication of the level of scaling, caused by perspective, applied to a vertex.
By extending the vertex values over the polygon, the perspective can be corrected for in each pixel to be ren-
dered.
The sameQ value can be used for Mip-Mapping. This is a process whereby a series of textures are created -
normally the same image in successively smaller sizes (half width and height, then quarter width and height,
etc.), and all of them stored in the texture buffer. These images are called MipMaps. Then, depending on the
amount of scaling applied to a texture as it is mapped to the screen, different MipMaps can be used for the tex-
ture. For intermediate levels of scaling, a mixture of two adjacent MipMaps can be used. This process can be
used to reduce image aliasing when a texture is reduced in size as it is mapped to the screen.

5  TheIO Processor

The IOP has the same core as the processor used in the original PlayStation, and is therefore used for running
PS1 games. But for PS2 software, its main function is to deal with all the peripherals that the PS2 can take. It
can be programmed separately from the EE, and has 2MB of its own dedicated RAM. In the case of our video
processing software, its principal function is to read the MPEG data off the hard disc drive efficiently and sep-
arate it into chunks of a single field.

6  PlayStation2 Video Effects

The video effects implemented in the PS2 include: wipes; 3D nonlinear effects, such as pageroll and ripple (as
illustrated in Figures 3 and 4 below); and pixel colour based effects, such as chromakey, and an “old film” ef-
fect.

Fig.3 Pageroll effect Fig.4 Ripple effect
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6.1  3D nonlinear effects

These effects are created by dividing the foreground into
horizontal triangle strips, creating a tile mesh (each tile is
approximately eight pixels square). These tile vertices
have a nonlinear effect applied to them first. For in-
stance, in the case of a ripple effect, theZ value (distance
to/from the screen) is modulated by a sine wave, with a
phase that can change every field. Then, once the nonlin-
ear part has been applied, 3D linear rotations and transla-
tions can be applied, along with some lighting, to
enhance the 3D appearance. Overall, the nonlinear 3D
effects are optimised to make as much use as possible of
the parallel processing capabilities of the PS2. VU1 can
be processing the linear part of the transform, and the
lighting, for one triangle strip, while the EE core, with
help from VU0, can be calculating the nonlinear part of
the transform for the next triangle strip. Also, at the same
time, the GS can be rendering the previous triangle strip,
sent from VU1. While all this is happening, the IPU is
also decoding the next fields of MPEG video, while the
IOP is busy reading further MPEG data off the HDD, and
separating out the audio, which SPU2 then plays out.
The overall data flow can be seen in Figure 5.

6.2  “Old Film” effect

The “Old Film” effects implemented reproduce typical film artefacts to make the video look as if it was shot
on film some decades ago (how many decades depends on the type of film simulated!). The effect combines
the following aspects:

1.As film has no interlace, and only 24 frames/second,
only one field of source video is used per frame;
2.The “film” can be colour, black & white, or sepia;
3.Film grain, blotches (specks of dirt) and scratches are
added to the image;
4.A random shake is applied to the picture;
5.A random level of defocus is also applied, the level
changing every frame;
6.Frames are dropped occasionally, to give jerky motion.

A typical sepia “old film” frame is shown in Fig.6.

The “old film” effect is applied almost entirely in the GS.
The EE only has to decode the original video into lumi-
nance, rather than RGB, for black and white or sepia film.

6.3  Chromakey Effect

In contrast to the effects described so far, the chromakey effect (that of replacing a blue or green screen back-
ground with an alternative image) uses the EE core to perform the bulk of the processing. To speed up EE core
processing, the RGB video data is sent in small batches to the Scratch Pad RAM (SPR, see above), and the 128-
bit multimedia instruction used to process four 32-bit pixels at a time. The multimedia instructions are all

HDD
AV Files

IOP
HDD control

Demux

SPU2
Mix

IPU
MPEG
decode

EE

GS

VU0

EE core VU1

Vector
Ops

Nonlinear Linear &
Lighting

Texture
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Draw
Field
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Display

Field

Video

xyz

RGBA

Audio
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Video
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Fig.5  Use of PlayStation2 for nonlinear 3D effects

xyz

Matrix

Fig.6 Typical “Old Film” frame
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fixed-point (various bit-widths can be used), and are written in MMX-like assembly code. This processing
takes up the majority of the time available per field.

7  Nvidia GPUs

The research we have carried out so far with consumer graphics cards has concentrated on the Nvidia GeForce-
FX series of chipsets. These range from the GeForceFX5200, available for a few tens of pounds, to the
GeForceFX5950Ultra, which can cost up to about £300. Most of the research has been carried out on the latter
device, on a MicroStar International (MSI) card with video inputs and outputs, but we have also used
GeForceFX5700-based cards. The higher-numbered GeForceFX chipsets are more powerful, running at faster
clock speeds and performing more parallel operations. They also have a higher memory bandwidth. However,
different versions of the various chipsets exist, with different specifications. At the time of writing, the newer
6800-series Nvidia devices are just becoming available - these will be more powerful still.

7.1  Development Setup

As mentioned above, most of the research has been implemented using a MSI board containing a
GeForceFX5950Ultra device. This was plugged into a 8xAGP slot in a 3GHz single-CPU PC running RedHat
Fedora Linux. The reasons for choosing Linux at this stage are many and varied, but include transparency,
flexibility, and fundamentally, the ability to output 50Hz PAL video! Nvidia provide full Linux drivers (uni-
fied for all their current chipsets) some documentation, and sample application code on their website.

7.2  OpenGL

Whilst the Windows DirectX drivers may provide some functionality not available with OpenGL on Linux,
using OpenGL means that the software can reasonably easily be ported to Windows or other operating systems
at a later date, if required.
OpenGL is capable of rendering graphics either mostly on GPUs, or if the GPU is not sufficiently powerful, to
perform some of the processing on the CPU instead. This makes OpenGL completely portable, not just be-
tween operating systems, but also across different graphics cards and PC setups. While this portability ensures
that OpenGL graphics programs will run on just about any hardware, it does make the software very abstracted
from the hardware on which it is running, making hardware-specific optimisations difficult.

7.3  Cg

A few years ago, Nvidia introduced their Cg language. This is a high-level shading language that can be used
to program the GPUs. The GPUs can run both vertex programs and fragment (pixel) programs. These Cg pro-
grams can be loaded by OpenGL running on the CPU, and also have parameters controlled by the CPU. The
Cg programs tend to be short (only a few lines), although current GPUs allow for longer programs, due to in-
creased numbers of registers available in their vertex and fragment processors. Each vertex program is run
from scratch on every vertex sent to the vertex processor by the CPU, and outputs vertex and texture data to
the rasterisers, which then pass texels and other data to the fragment processors. Again, the fragment proces-
sors run their Cg programs on every pixel to be rendered, and can receive parameters from the CPU. The
GPUs, and hence the Cg code, use 32-bit floating point numbers for each RGB and alpha channel (i.e. 128 bits
per pixel), as well as for vertices and other parameters internally. This increases the quality of the final image,
particularly if multiple rendering passes are used, over the standard 8-bit fixed-point used previously, and in
the PS2. However, the drawback of using four times as many bits per pixel is the impact it has on the memory
bandwidth.
Other similar shading languages now exist, such as OpenGL shading language, and Microsoft’s DirectX HLSL
(High-Level Shading Language). We chose to use Cg as it is now fairly well established, and hence is well
supported with documentation and sample code.
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7.4  Video

As mentioned above, the graphics cards that we used for research had video outputs (and in some cases,
inputs). These were analogue S-Video interfaces (or analogue composite). As we are principally inter-
ested in processing standards-compliant video formats, rather than arbitrary frame sizes, having a video
output is important. The graphics cards used are capable of outputting both standard definition (PAL
and NTSC) video, as well as high definition (including 1920x1080i, and 1280x720p) - another aspect of
interest for us.
Unfortunately, at the time of writing, we have not yet succeeded in getting the video inputs to work, due
to an apparent lack of information, or driver, to do so. Consequently, the video processed on the graphics
cards has been decoded in the CPU (from MPEG or DV sources), and sent via the AGP to the card.
The GPUs also contain some video processing hardware themselves, including parts of MPEG decoders
(IDCTs and motion compensation, but not bitstream parsing). However, we have not yet started using
these, partly due again to a lack of information/driver, but also because we haven’t really needed to yet
(a 3GHz CPU is more than capable of decoding two standard definition video channels)!

8  PlayStation2 / GPU comparison

It would be possible just to present a table of numbers, statistics (e.g. polygons/second, etc.), and check-
boxes to compare the relative merits of using a PlayStation2, or a PC with particular graphics card, to
process video. However, whilst these numbers and facts can possibly be used to indicate whether a par-
ticular requirement can be achieved or not, they scarcely tell the full story. This section will therefore
try to illustrate the pro’s and con’s of each system, based on the author’s experience of developing video-
processing software on both.
But first, it is necessary to provide some numbers, for reference later.

Table 1: Numerical comparisons between PS2 and CPU/GPU

Parameter PlayStation2
3GHz CPU &

GeForceFX5700
3GHz CPU &

GeForceFX5950

CPU speed 300MHz 3GHz 3GHz

CPU bit-width 128 32 32

Vertex processor VU0, VU1 On GPU On GPU

Vertex proc speed 300MHz 475MHz 475MHz

Vertex proc bits 128 128 128

Vertices/sec 150 million 356 million 356 million

Fragment/pixel proc-
essor

Limited, on GS On GPU On GPU

Pixel proc speed 150MHz 475MHz 475MHz

Bits/pixel 32 fixed 128 floating 128 floating

Pixels/sec 2.4 billion 1.9 billion 3.8 billion

VRAM bandwidth 38.4GB/s 14.4GB/s 30.4GB/s

VRAM capacity 4MB 128 - 256MB 256MB
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[Nvidia figures from www.nvidia.com]

8.1  CPU performance

The CPU performance is not particularly critical in video-processing applications, as long as it is suffi-
cient to decode the required number and size of video streams, and control the processing carried out
elsewhere. For the PS2, the EE core is, however, needed to do more complex pixel operations, such as
chromakey. For this, fast access memory (SPR) and wide bit-width multimedia instructions are invalu-
able.

8.2  Vertex Processors

The vertex processor performance in all cases is safely in excess of that likely to be required for this kind
of application, and they can all be run in parallel with other processors. Vertex processors are more crit-
ical for high quality rendering of synthesised images.

8.3  Fragment/pixel processors

The fragment, or pixel processor is one area where the GPU out-performs the PS2. The PS2 has limited
pixel operations in the GS (alpha-blending and testing, and Z-testing, bit-masking, etc.). More complex
pixel operations, such as a chromakey, have to be performed further upstream in the EE core, using mul-
timedia instructions. Clearly, in the CPU/GPU combination, the CPU could also be used in a similar
way, but the presence of a fully-programmable fragment processor provides the capability to perform
many more operations per pixel in real time. The use of Cg or other high-level shading languages also
reduces the time required to implement processing algorithms in these processors.
For more straightforward rendering (i.e. including any functions that the PS2’s GS can implement on a
pixel), the pixel fill rates are comparable between the different systems.

8.4  Graphics Memory (VRAM)

It is clear from the figures quoted above that the PS2 has very little GS RAM, compared to the amounts
of VRAM provided on the graphics cards. However, as the bandwidths available to the RAM, possible
because the GS RAM is embedded in the GS, and between EE and GS are greater on the PS2, this does
not normally cause problems. However, the size of the GS RAM does impose one limitation: on the size
of video image that can be rendered. To allow for double-buffered frame (field) buffers, a Z buffer, and

CPU->VRAM band-
width

1.2GB/s 2.1GB/s (8xAGP) 2.1GB/s (8xAGP)

VRAM->CPU band-
width

1.2GB/s 132MB/s (PCI) 132MB/s (PCI)

Video Input No (but yes on PSX) Yes (depends on card) Yes (depends on card)

Video Output Yes Yes Yes

MPEG decoder Mostly (bitstream,
IDCT)

Mostly (IDCT, motion
comp.)

Mostly (IDCT, motion
comp.)

Anisotropic filtering No Yes Yes

Table 1: Numerical comparisons between PS2 and CPU/GPU

Parameter PlayStation2
3GHz CPU &

GeForceFX5700
3GHz CPU &

GeForceFX5950
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video-sized texture buffer (not absolutely necessary, as the texture can be used in stages), the video size
is effectively limited to standard definition. In fact, 4MB of RAM is not even sufficient to store one field
of 1920x1080 HD video (1920x540x4 bytes per pixel).
Where the PS2 does have the upper hand, however, is the bandwidth to the VRAM. The values of band-
width (tens of GB/sec) may seem massive, but they can potentially start to become a bottleneck, and of
course the figures quoted are necessarily theoretical maxima - the actual values are likely to be much
less. Consider, for instance, standard definition video (720x576x25, or 720x480x30 = 10.4Mpixels/sec,
@4bytes/pixel, this is 41.5MB/sec): the available bandwidth is still hundreds of times larger. However,
this 41.5MB/sec bandwidth figure must be multiplied up many times: for a typical rendering operation,
the current pixel value, current Z value, and at least one texture value must be read from the frame buffer,
and video and Z written, per pixel, making a total of at least five memory accesses per pixel rendered.
If multiple textures are used per pass (only possible on the GPUs, not in the PS2), MipMapping is ap-
plied, or depending on the transform applied to the texture(s), many more than one texture sample may
need to be read per pixel rendered, the required bandwidth increases further. Also, for the GPUs, the
pixel operations normally use 128 bits pre pixel, increasing the bandwidth even more. For typical video
processing operations, multiple rendering passes are required. Also, if fullscreen anti-aliasing is applied,
the images may become effectively 16 times as large (four times in each of two dimensions).
As the fragment/pixel processors rely on the VRAM bandwidth to read and write their required data, if
a large percentage of the time available each field/frame is taken up with memory accesses, this can sub-
stantially reduce the possible number of operations that can be applied to each pixel. For the
GeForceFX5700 processor, the 14.4GB/sec quoted bandwidth is likely to become a bottleneck - and in-
deed, with early versions of our video processing software, we have found this to be the case. This bot-
tleneck can be compounded in normal CPU/GPU use, as it is likely that two screens will be used: a high-
resolution and frame-rate VESA monitor, as well as the video out.

8.5  CPU<->VRAM bandwidth

With the advent of PCI-Express graphics cards, this potential bandwidth bottleneck could be removed,
as the bandwidth will be 4.2GB/sec in both directions. Currently, the bandwidth in the direction of the
graphics card (or GS) is not too much of a problem (as long as the graphics card is in a 8xAGP slot), as
for two streams of video sent as textures, only 83MB/s is required. However, the reverse direction is
currently a severe bottleneck for graphics cards, if the final output video image is to be read back from
the graphics card, as a single standard definition video stream takes up a third of the maximum band-
width available (high definition video is impossible).

8.6  Low-level control

One major difference that seems apparent from working on both PS2 and GPU systems, is the amount
of low-level control available. For the PS2, both the official developer kit, and the PS2 Linux kits come
with comprehensive hardware manuals. While at the start of development on the platform, this wealth
of information may seem overwhelming, it does provide the programmer with a fantastic visibility and
direct control of the hardware. Also, as there is no multi-layered operating system taking its share of the
available resources, the PS2 programmer has absolute control of the whole system. This makes it much
easier to optimise code, as it can be deduced what functions actually do at a hardware level. Another
benefit at this level that the PS2 provides is genuinely unified graphics memory. Any part of the 4MB
of RAM inside the GS can store frame, Z, or texture, or in fact change between type at the whim of the
software. This enables, for example, what was the frame buffer to now be considered a texture and re-
rendered to what was the texture buffer, and is now the frame buffer. To achieve the same effect in
OpenGL on a GPU would require copying from the frame buffer to another texture buffer, etc. - all of
which adds to the memory bandwidth required, as well as processing time.
OpenGL is a fairly abstract and object-oriented language. As mentioned above, this has the benefit of
making it very portable between hardware and operating systems, but does have the strong disadvantage
of being somewhat obfuscatory when it comes to determining what the hardware is actually doing. This
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is further not helped by a lack of hardware information available about the GPUs themselves from Nvid-
ia. This lack of control and information can only lead to processing on GPUs being somewhat ineffi-
cient, relative to what is possible on a PS2.
Another problem with OpenGL is that it is really designed for rendering synthesised images, not process-
ing ones that already exist. It seems likely that later versions of OpenGL (OpenGL2 is imminent, and
later versions than that already being discussed) will deal better with processing video, as more and more
developers see the potential in graphics cards to do so. This may increase support for streaming textures,
and allowing buffers in the VRAM to be multi-purpose.

8.7  Development time

It is hard to compare development times between the two platforms fairly, as the PS2 came first, and it
was the author’s first experience of graphics hardware (as opposed to dedicated video hardware). How-
ever, it is probably fair to say that the PS2 is harder to get started with (although this is very likely im-
proved now, with the amount of support information available, which has increased enormously since
the PS2 was first released). OpenGL and Cg are reasonably straightforward to learn, and simple appli-
cations can be got working very quickly indeed. However, as explained above, at a certain point, it is
useful to have more visibility of the hardware, to allow for optimisation, or implement certain specifica-
tions.  At this point, the PS2 probably becomes the preferable platform.

9  Conclusion

With graphics processors (either in games consoles or normal PC peripherals) advancing at a far higher
rate than CPUs, their use as a platform for processing video is likely to increase correspondingly. Man-
ufacturers are beginning to recognise this, and are including more and more video-specific components
in these processors. However, there is still some way to go before they have all the functionality in place
to be the automatic choice for processing video, as they are still primarily designed for other uses. Cur-
rently, though, they can be used to implement some interesting and fairly powerful processes on video
streams.
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éoãfâgòtç}5ePëyîb�9ñ;âbèyçfòtç�ï!éoãfâ�òÍçDéfìTð½é{åÍæPí�ï{äPçvâ�óôëyî{çaõvçfæxï{åtë�æPçDø�z9óôçDâ�ï{ð½î{çDéfìTï{ä½åté�íyâbèyç�nu|9óôçaâg4
ï{ð½î{çDé�öNçaî�åÍõ�â�í�ç}5
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L�ë�ó�â�ãfåÍòtårï¡â�ïoç!â�éoé{çaéoé�õvçfæxï)ë�ó
ø�åêé{ãfî{åtõvåÍæ½â�ùPåtòÍåÍï°÷�ùTç�ï°ñ;çfçaæ�ï{ä½ç!ã�òêâ�éoé{çaéZåtæ9óôçDâ�ï{ð½î{ç+é{ö½âyã�ç�ì
ñ;ç�ð½é{çaø�õ�ðPòrïoåÍö½òÍç�ø�åtéoã�îoåtõ�åtæ½â�æyï�âgæ½â�òÍ÷�é{åté&?lâgòêé�ëvïoçfîoõvçaøÖø�åêéoã�îoåÍõvåtæ½âgæxï�ó�âyã@ï{ëyî!â�æ½âgòt÷/4
é{åtéaì�ë�î!ï{äPçvõ�ðPòrïoåI4ªã�òêâ�éoé!è�çfî¡é{åÍëyæÖëgóSe�åêé�ä½çfîkä é�òtåÍæPçDâgî�ø�åêé{ãfî{åtõvåÍæNâgæxï�â�æ½âgòt÷�é�åêéR@Ol T}T ì T nAop51!åtéoã�îoåÍõvåtæ½â�ïoåÍæ½í+âgK�çaé
âgîoç)ø�ç�ïoçfîoõvåÍæPçDø4åÍæ�ï{äPåêé
é{ö½â�ãfç�ìbåtæ�é�ð½ã¡ä�â�ñ;âb÷+ï{ä½âgï�ë�öPï{åtõvâ�òyé{çfö�4
âgî¡â�ïoåÍëyævëgóTï{äPç!öPî{çDø�çMGNæPçaøvíyî{ëyðPö½éGåêé)â�ï{ïoâ�åÍæPçDø!5 r éHâ4òÍåtæPçaâ�î)ø�åêé{ãfî{åtõvåÍæNâ�ï{åtë�æ�õvçfï{äPë�ø�ì
ñ;çHçBK�öTçaã�ï�ïoä½â�ï�é{ð½ã¡ä"ö½î{ëyùPòÍçaõ�é�âyé
ïoîoâ�åÍæ½åÍæPí�é�çfï�é�å<;fçyìgâgæ½ø"í�çfæ½çfî¡âgòtåD;Dâ�ï{åtë�æ
ìDñ~åtòtòxùTç�òÍçDé{é
öPîoë�æPëyðPæ½ãfçaø�ï{ä½â�æ?óôëyî�â�æPë�æPòtåtæPçaâ�î~õ�çfï{äPë�ø!5§7�çfç�âgòêé{ëE¦!âgæ½øUä é&l T sgo�ãfâyé�ç!óôë�î��oé�åtõvöPòtç
åêé�ùNçDé°ï��våÍæ/îoçfíyâ�îoø9ï{ë�ã¡äPëyåtãfç�ë�ó�ãfòtâyé{é{åIGNçfîk5� ë�æNé�åêø�çfîGïoäPç+é{ç�ï�ë�óNóôçDâ�ï{ð½î{ç~èyçaã@ïoë�î¡éfì}å�æ_ç��yï{äPça÷�â�î{ç�ã¡ä½â�îoâyã@ïoçfîoåD;açaø�ù�÷�â�óôçaâ�ïoðPîoç
é{ç�ïaì0Õ�æ�è$5 r æ½çfñ2ëyî�ïoäPë�íyë�æ½â�ò)ã�ë�ë�î¡ø�åtæ½â�ïoç�é{ö½â�ãfç9åté�ø�çfï{çfîoõvåÍæ½çaø�ì)é{ð½ã¡äzïoä½â�ï�ï{äPç
é{öPî{çDâ�ø�ëgó~ã�òêâ�éoé�õvçaâ�æ½é�åtæ�ïoäPåêé�æPçañeé{ö½â�ãfç�åté�õvâuK�åÍõvå<;fçaø�ì
ñ~äPåtòÍç9ï{äPç9ãfë�õvö½â�ã�ï{æPçDé{é
ëgó�ã�òêâ�éoé�çDé�åêé"îoçaé�ï{î¡âgåtæPçaøU5Yá
ç�ï�ïoåÍæ½íté.ùTç�ïoäPç?ï{ëgï¡âgò;è�âgîoåtâ�æ½ã�çB4Lãfë�èbâ�î{åêâgæNã�çvõ�â�ï{îoåDKzë�ó
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çfåtí�çaæ�è�çaã�ï{ëyîoé)ëgó
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åtæ½âgæxï�ó�â�ã�ï{ëyî�é�ö½âyã�çyì�âgòtòtë�ñ�é�é°ïoîoâ�åÍíyäyï{óôë�îoñ;â�îoøÖæPçaâ�î{çDé°ï�õvçaâ�æzâyé{é{åtí�æPõvçfæxï�ëgó�è�çDã@ïoë�î¡é
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í�îoë�ð½ö½é T ïoë���5
r õvëyæPíÖïoäPç/õvâ�æ�÷ çMK�öNçaî{åtõvçfæxïoé�ãfâ�î{îoåtçaø ëyð�ïaì;â�óôçfñ åÍõvöTë�î{ïoâ�æyïvöTë�åtæyï¡évâgîoç?â�é

óôë�òtòtë�ñ�éB5
T 5i��ç�é�ï{ð½ø�åtçaøsõ�âgæ�÷'øPåI�]çfîoçfæxï�óôçaâgï{ðPîoç�é�çfïoé=5�à�ëyé�ï�ñHçaî{çvõ"ð½òrïoåtéoãfâ�òÍçB4[ù½âyé�çDø!5£Qªæ
ö½âgî{ï{åêã�ðPòêâgî�ñ;ç9åtæPåÍï{åêâgòtòÍ÷�ð½é�çDøzõ"ðPòÍï{åêéoãfâgòtç9çaæyïoî{ëyö�÷�óôçaâgï{ðPîoçaé"ëgó~â � âgæPæ�÷�çaø�íyç
ï{î¡âgæ½é�óôë�îoõvçaøAåÍõ�â�í�çaé�ï{ë9ö½î{ë�è�åêø�ç�åÍæPóôë�îoõvâgï{åtë�æ�ëyæÖòtâ�î{íyçfî~öPåtçaãfçaé!ëgó�âgíyí�îoçfíxâ�ï{ç
5vHðPï�ñHçvòêâ�ï{çaî�ù�÷xöNâ�éoé�çDø�ï{ä½çaé{ç � âgæPæ�÷ÖçDø�í�çB4[ù½âyé�çDø�óôçDâ�ï{ð½î{çDé4åÍæsó�âbè�ëyðPî4ëgó;ï{äPç
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n'5i��ç4çMKPâ�õ�åtæPçDø9ïoäPç�ø�çfæ½ë�åêé�åtæPívëgó�ï{äPç�åtõ�âgí�ç4øPâgïoâ�öPîoåÍëyîHïoë9âgæ½â�òÍ÷�é{åté=5$L�äPåté�ñ�â�é
æPëgï�óôë�ð½æ½ø?ï{ë�ùTç�ëgó�ùTçfæ½çMGPïk5

s�5ZC�â�ïoäPçfî;ï{äNâgæAï{äPç4æPçDâgîoçaé�ï;õvçDâgæ/ã�òêâ�éoé�åDG½çfî�ð½é{çaø?åtæ?ïoäPç4õ"ðPòÍï{åtöPòtç�ø�åêé{ãfî{åtõvåÍæ½â�æxï
âgæ½â�òÍ÷�é{åtéaìbñHç;âgòêé�ë!åÍæ�è�çDé°ïoåÍíxâ�ïoçaø4æPçDâgîoçaé�ï�æPçaåÍíyäxùTë�ð½î�ø�åêéoã�îoåÍõvåtæ½â�ïoåÍëyæ�âgö½öPî{ëxâ�ã¡äPçDé? T 4]â�â"ì�sg4]â�âx@M�Pâgæ½ø?â�õ"ðPòÍï{åtòtâb÷yçfî;öNçaîoãfçfö�ïoî{ëyæU5�¦�ë�ñ;çfèyçfî�ïoäPç4òÍåtæPçDâgî~âgöPö½î{ëxâ�ã¡ä
ñ;âyé�óôëyðPæ½ø�ïoë!íyåÍèyçHèyçfîo÷4í�ë�ë�ø�î{çDé�ð½òrï¡éfìgâ�æ½ø�åÍïoéGëyöNçaîoâgï{åtë�æ�ñ�â�é�çaâyé�åtòÍ÷�ãfë�æxï{îoë�òtòtçaø
âgæ½ø?õ�âgæ½â�í�çaøU5

zF5i��ç?ñHëyî32yçaøsë�æ îoçfù½åÍæPæ½çaøºz��gz��Ys}z
|�åtõ�âgíyçaéaì�ëyù�ïoâ�åÍæ½çaøzóôîoë�õ ï{ä½ç�ë�îoåtí�åtæ½âgòtòÍ÷
é�å<;fçDø�n
n
»un_� T »g|}z�åtõ�âgíyçaé=5¹��çÖçBK�ä½âgð½é�ï{åtè�çaòÍ÷ ï{çaé�ï{çDø�ï{äPçÖö½î{ë�ã�çDé{é{åtæPí�ðNé�çDø
ë�æ'â�ù½â�ï{ï{çfîo÷/ëgóS�
|}|vïoîoâ�åÍæ½åÍæPíAé�çfï�åtõ�âgíyçaé!ð½é�çDøÖâ�ø½ø�årïoåÍëyæ½âgòtòt÷AëyæÖïoäPç�ëyî{åtí�åtæ½â�òn}n
»}nx� T »u|uz�åtõ�âgíyçaé=5,1�âb÷�é)ëgó�ã�ëyõvöPð�ï{ç�ï{åtõ�ç!ë�æ9â&7�ð½æ�à�åêã�îoëyé{÷�é�ï{çaõ�é�ã�òtð½é�ï{çfî
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ë�è�çaîoâ�òÍòTõvåtéoã�òêâ�éoé{åIGNãaâ�ïoåÍëyæ?î¡â�ïoç�ë�ó���5ð»
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Abstract

We describe a multistage approach to shot cut detection based on image descriptor differencing
at a coarse temporal scale, followed by identification of shot cuts and fades at frame-level accuracy
based on explicit modelling of image data evolution during fades.
Keywords: Video parsing, cut detection, media discontinuity

1 Introduction

Effective shot change detection for video sequences is an essential prerequisite for the automated and
computer-assisted manipulation of digital visual media.

We propose here a framework for shot change detection based on analysis of image descriptors, such
as luminance histograms. Our implementation focuses on shot change detection as the first stage of
media processing for the addition of footage to a large media library, so we are interested in exploiting
as far as possible image descriptors that will be of use generally in the media library. These descriptors
can then be computed in a separate feature extraction pass and stored alongside the media files. Thus,
that portion of the execution time of this algorithm that involves feature extraction should properly be
amortized over the lifetime of the media asset in the library, taking into account use of the features in
subsequent stages.

In the subsequent sections of this paper, we will first describe a general method for data fusion across
multiple media descriptors for discontinuity detection, and an application of this method to shot change
detection for video sequences. We then outline a new approach to dissolve modelling and describe its
effectiveness. We wish to note that in the final stages of the preparation of this paper, we discovered
work similar in approach to the techniques described in the next section, published by Taskiran and Delp
in [5].

2 Change detection in frame descriptors

Consider a difference featuresn between two frames, and letP (T ) be the probability that the two frames
span a shot change boundary. We have

P (T |n) =
P (n|T )P (T )

P (n)
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2.1 Prior probabilities

In order that new frame features can be added to the shot detection framework, and to make the system
as generally applicable as possible, we will avoid using specific prior distributions. Thus, we assign
a uniform probability distribution to the likelihood,P (n|T ). This is a working assumption which re-
flects that across shot transitions, a feature change may take on any value - for example, global motion
estimation will be degenerate across hugely disimilar frames, and colour histograms may be arbitrarily
different or similar. This likelihood could alternatively be computed for a particular feature using an
existing corpus for which the ground truth is known, but there is then an attendant risk of specialising to
the characteristics of that corpus.

Many researchers have assigned prior distributions to T parameterised on shot length, introducing a
bias against very short shots, but shot length distribution is a characteristic of genre, and in music videos,
for example, shots may be shorter than one half second. Furthermore, glitches and special effects in
video may result in shots of only one frame long, e.g. where significant dropout has occured, or in a
faux ‘subliminal image’ effect common in music videos. We therefore also assign a uniform probability
to P (T ), to reflect that shots may conceivably be of any positive length. Any more informative prior
will necessarily be genre-specific (and could easily be incorporated where consideration is restricted to
a specific genre).

We are then left with the problem of computing the prior for the feature in question,P (n). Again,
this can be explicitly evaluated by off-line analysis of a corpus, but again we feel that greater generality
is achieved by computing this distribution from the data itself. In this implementation, we assume that
the distribution will be approximately normal within a shot for any given difference feature, and that
the value across a shot transition will be a large outlier of the normal distribution. Then, evaluation of
whether a given value is an outlier can proceed based on two windows, one to either side of the point
under consideration. As estimation of the parameters for a normal distribution is sensitive to outliers, we
cannot include the present point in the window, and would ideally exclude previously identified shot cuts
as well.

The principal parameter to be determined is the appropriate window size for estimation of the statistics,
and it is here that our prior conception of shot length must be taken into account. At present, we use a 60
frame window for frame-to-frame metrics, and aindow size of 6 samples for metrics spanning 10 frames.
In future, some form of adaptive window sizing procedure, alongside a more sophisticated estimation
process for the metric statistics inside the window, will be incorporated.

2.2 Video Features

The present implementation makes use of three principal frame-level features. The first is an estimate of
the translation global motion, computed using integral projection based on an image model of

In(x) = In−1(x + d)

whered is the global motion, i.e. not varying with pixel site. This measure can be used directly
as a frame-to-frame difference, as generally large estimated displacements correspond to large frame
differences. More sophisticated global estimation techniques can be used, as, for example, in the paper
by Kokaram [4].

Histograms have also been recognised as suitable for shot change detection, for example as described
by Hanet al [3]. We employ here a the bin-to-bin histogram difference. Each frame of the sequence is
converted into theL,U, V colourspace, and a 101-bin histogram is computed of theL plane:

h(i) =
∑

L(x)=i

1
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This full histogramh is then downsampled to a ten bin histogramH, and our difference measure
between frames is the sum of the absolut bin-to-bin differences of their downsampled histograms:

Dn1,n2 =
∑

i=1:10

|H(i)n1 −H(i)n2 |

The final feature used is the frame-to-frame edge moment differential. An edge map of each of the
two frames to be compared is found, using the Canny edge detector. These edge maps are then dilated
using a five-by-five disk-shaped structuring element, to improve robustness under motion. We denote
this dilated edge mapE, taking on valuesE(x) = 1 if there is an edge at sitex and zero otherwise. The
second order momentM of the dilated edge map is then found, where

M =
∑
x

|x|E(x)

This second order moment is strongly correlated with the distribution of edges in the image. Thus, the
frame-to-frame difference of this moment is an indicator of the difference between frames. A variety of
other edge-related features can be used for shot detection and characterisation, for example the Hough
transform [2] and a disappearing edge count [1].

The global motion and histogram differences are computed off line, and used for first-pass cut de-
tection: if any difference value exceeds 50 standard deviations, the corresponding frame is immediately
assumed to mark the start of a new shot. The standard deviation value used is the lesser of two calcu-
lated from windows to either side of the frame under consideration; this results in more stable sequence
statistics being automatically selected. The use of such a locally estimated measure is greatly preferable
to a prior fixed threshold value. For example, a shot of a single frame in length can be detected, and a
shot transition between an ordinary shot and a shot consisting of a succession of unrelated frames can be
detected, but a shot consisting of a succession of unrelated frames is not artificially partitioned.

Using the assumption that each difference feature is independent of the others, we can also combine
local deviations to find more subtle shot cuts. Adding local deviations is conceptually equivalent to
multiplying and scaling the associated probabilities. Where a combined local deviation exceeds 50, we
flag a shot transition.

Local deviations between 10 and 50 in any single difference feature we consider to be possible shot
cuts, for further examination. At present the only subsequent feature in use is the frame-to-frame dif-
ference of the second order moment of the dilated edge distribution. We evaluate this difference vector
around the possible shot cut and compute local deviations as before. These local deviations are added
to those previously computed using the other features, and if the sum local deviation exceeds 50, we
assume that a shot cut has been detected.

This process can be augmented naturally to add in more sophisticated frame difference techniques
until the confidence (local deviation) at each frame has move outside the thresholds of uncertainty.

The framework as developed here uses differencing between adjacent frames. We expect that gradual
shot transitions can be more easily detected at a coarse temporal scale. In the following section, we
outline how a possible shot transition region is examined to see whether it is likely to be a fade.

3 Fades

Fades, also known as dissolves, are a common transition in many video genres, including motion pictures,
sports footage, and music videos. While analysis of frame features at a coarse temporal scale is generally
sufficient to localise fades and other gradual shot transitions, this method by itself will result in very low
precision, as video regions with high motion content will also be found. Some researchers have used
edge information to analyse possible fade regions, but this is a computationally expensive approach,
especially as dilation of edge maps is crucial for robsutness to motion. We introduce here an efficient
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scheme for modelling fades in which possible dissolve regions are characterised by analpha curve,
where alpha is a parameter varying from 1 to 0 as the fade progresses. Examination of this curve then
informs classification of the video region as being a fade, or otherwise.

3.1 Fade model

Our model assumes that a frame occuring during a fade is made up of a linear combination of two
template frames, designatedIT0 andIT1 , at positions preceding and succeeding the fade region. The
image predicted by this model, for a given crossfade strengthα, is designatedIM(α), and calulated by:

IM(α) = αIT0 + (1− α)IT1

The likelihood of a given value of alpha is proportional to the agreement between the image predicted
by the model and the observed data, which is the image at time t, designatedIt. Specifically,

p(α|It) ∝ exp(−
∑
x

[(It(x)− IM(α)(x))2])

For a given image, we can estimate the MAP value of alpha by differentiation with respect to alpha.
It transpires that the optimal value is given by

αopt =
∑

It∇T0,T1 −
∑

IT1∇T0,T1∑∇2
T0,T1

where∇T0,T1 is simply the difference imageIT0 − IT1 .

3.2 Global motion

The model as presented makes no account of the motion content of the image sequence, which will
result in probable failure to accurately estimate alpha in dissolves that occur between sequences with
significant motion. As a first step to improving robustness in this instance, we introduce global motion
compensation. When computingα for frameIt, we first apply cumulative global motion parameters to
frameIT0 and inverse parameters to frameIT1 , to compensate each template to timet. After this com-
pensation, only a partial region of each template frame will contain valid data, and estimation ofα is
performed on the overlapping area of the valid regions. Naturally, this process introduces a dependency
on the accuracy of the global motion estimator; the results described herein were based on an implenta-
tion using a fast, projection-based estimator, estimating translation motion only, and difficulties can be
expected in sequences featuring fast zooms. Compounding this disadvantage is that we require global
motion estimates in precisely the region where they are most difficult to compute, viz. within the dis-
solve itself; we intend to investigate a more sophisticated implementation which will extrapolate global
motion parameters computed prior to the suspected dissolve region where possible. A further difficulty
is that analysis of regions undergoing rapid global motion may be impossible, where the intersection of
the regions valid after global motion compensation is the null set.

3.3 Local motion

Local motion in the dissolve region will introduce a large, localised discrepancy between the template
image and the current frame. These discrepancies will then confound the alpha estimation process. To
account for this, we employ an iterative reweighting scheme based on a Cauchy weighting function. In
our first estimate, the weight at every site is 1. We then examine the residual image,Ie = IM(α) − It,
and update the weight at each site according to:

w(x) =
1

(1 + r2)
, r =

Ie(x)
(2.385)(s)

√
(1− h)
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In the above formula, the residualsIe(x) are being scaled to take into account the leverage of the point
h (distance from data centroid), ands is related to the median absolute distance of the residuals from
their median ( a measure of the overall spread of the data).

This process is repeated until the number of residuals exceeding a certain threshold is zero, or the
sum of the residuals begins to increase, or the number of iterations exceeds a certain limit. None of these
halting conditions is entirely satisfactory, as correct estimation of alpha may indeed involve increasing the
number of pixels assigned to local motion after some iterations, and choice of the appropriate thresholds
is difficult (currently alpha estimation is discontinued if less than 2% of the image has an error of more
than 20 graylevels). While the present, somewhat ad-hoc approach does produce satisfactory results, it
is frequently apparent that the algorithm is performing more iterations than necessary.

3.4 Fade curve analysis

Having calculated the alpha values for each frame in the region of interest, we then examine the resulting
curve to see whether it has the characteristics of a fade. We have adopted a simple approach in which
the alpha curve is partitioned into three sets of adjacent values, and fit a line to each partition. We
iterate over every possible choice of two changepoints in the alpha curve, and lines are fitted to each
of the three resulting segments. A confidence measure is associated with each line, based on the mean
squared distance from each point in the segement to the line. The partition that gives the highest average
confidence over the three fitted lines is then selected. As the number of points in an alpha curve is only
of the order of forty, this exhaustive search strategy is by no means computationally prohibitive.

Having found the lines of best fit, the slope of each of the three lines can then be examined to determine
if a fade has occured: we expect a flat first line, followed by a line with a negative slope of moderate
magnitude (corresponding to the transition region), followed by a final flat region. This method generally
determines the start and endpoints of the fade to an accuracy of within +- one frame, depending on the
motion characteristics of the shots involved.

We also examine the alpha curve for sudden discontinuities; if successive values differ by more than
0.7, we assume that a shot cut has occured.

3.5 Examples

Figure 1 shows a fast dissolve in a cricket sequence, and figure 2 shows the extracted alpha curves. It
can be seen that without either global motion compensation or reweighting local motion regions, fade
detection has failed. The fade is detected, however, when both compensation strategies are employed.

We encounter again the issue of selection of an appropriate window size; where the window is too
small, the flat areas corresponding to the unmixed shots will not be readily apparent, whereas with an
overlarge window, cumulative motion effects can be expected to degrade the quality of the curve greatly.
Furthermore, the slower the dissolve, the larger the window will be necessary. At present, a fixed window
size of forty frames is employed.

4 Results

We have applied the shot transition detection framework described in section 2 to a variety of test se-
quences, though at the time of description the algorithm is under continual refinement and elaboration.
The first is a simple ’proof of concept’ sequence, referred to here asNews, with 645 frames, 5 cuts, and 4
frames. For this sequence, we attempt to detect frame fades across regions even if the regions are already
known to contain a cut, and discard cuts that are subsequently found to be within fade regions. Here we
achieve 100% recall for both cuts and fades, and 100% precision for fades, with all fade start and end
points detected to within one frame of the observed values. However, two spurious shot cuts are detected,
bringing the cut detection precision down to 83.3%. These spurious shots correspond to sudden small
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Figure 1: A cricket sequence containing fast local and global motion on both sides of a fast dissolve. The
frames shown correspond with offsets 5, 10, 15, 20, 25, and 30 in figure 2.
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Figure 2: Alpha estimation across a fast dissolve with significant global and local motion. The dissolve
starts at frame 19 and ends at frame 27. The dotted lines show the region partitioning.
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differences from image to image in regions that are otherwise perfectly stable, so in a sense this kind of
failure is intrinsic to the algorithm as presented. However, these false alarms could easily and cheaply
be suppressed by imposing a minimum on the norm of the frame difference image, to insure that cuts are
only detected when changes are over a significant region of the image.

We also analysed a 14,000 frame video of cricket play. This sequence contains 62 cuts and 20 fades.
It is characterised by much fast global motion, including fast zooms, and quick crossfades, typically
over 6 to 10 frames. Here we achieve 92% recall and 86% precision in cut detection using the media
discontinuity scheme of section 2. Fades are identified with 70% recall and 80% precision. When we
take into account the detection of cuts via discontinuities in the alpha curve, we score 94% recall and
86% precision.

The accuracy of the results in analysing the cricket sequence suffer due to the motion characteristics
of the sequence. We expect that these results can be improved upon through improved global motion
estimation.
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Abstract

We describetools for automaticidentificationof diatomsby comparingtheir photographswith
otherphotographsanddrawings,via a model. Identificationof diatoms,i.e. assigninga new spec-
imen to oneof the known species,hasapplicationsin many disciplines,includingecology, paleoe-
cologyandforensicscience.Themodelwe build representslife cycle andnaturalvariationof both
externalshapeandinternaltextureovermultiplespeciesandis basedonprincipal curves. Themodel
is alsosuitablefor automaticallyproducingdrawingsof diatomsatany stageof their life cycledevel-
opment.Similar drawingsaretraditionally usedfor diatomidentification,andencapsulatevisually
salientdiatom features. In this article we describethe methodsusedto analysephotographsand
drawings,presentourmodelof diatomshapeandtexturevariation,andillustrateourapproachwith a
collectionof drawingssynthesisedfrom our modelandderivedfrom examplephotographs.Finally,
we presenttheresultsof identificationexperimentsusingphotographsanddrawings.
Keywords: Classification,automaticdrawingsynthesis,principal curves,diatoms.

1 Introduction

Diatomsareunicellularalgaewith ahighly ornatesilica shellaroundeachspecimen.Theshellcontains
two larger elementscalledvalves,oneon eithersideof the cell, which bearspecies-specificpatterns.
Identificationof diatoms,i.e. assigninganew specimento oneof theknown species,hasapplicationsin
many disciplines,includingecology, paleoecologyandforensicscience.Specimensareusuallyidentified
by highly trainedspecialistsby consideringdiatommorphologicalcharacteristics,includingshapeand
texture,andcomparingthemto photographsanddrawingsof previously identifiedspecimens.This task
is challengingdueto ahugenumberof diatomspecies,similaritiesbetweenspeciesandlife cyclerelated
changesin shapeandtexture.

Recentlytherehavebeenvariousefforts in quantitative analysisof diatomshapevariation[2, 6, 7]. A
systemfor automaticidentificationof diatomspecimensin photographs,basedon thesilica shellshape,
sizeandpatterncharacteristics,wasdevelopedin theADIAC project[1]. We seekto extendsuchcapa-
bilities throughtheinclusionof biologicaldrawings. Thereis a wealthof diatomspecimendrawings in
thebiologicalliteratureaccumulatedovermany years.Thedrawingscontainmainly thesalientinforma-
tion requiredfor identificationandthusmayserveasmodelsof eachspecies.Hence,includingdigitised
drawings in thesystemandproviding theability to comparephotographsanddrawings hassignificant
benefitsfor thebiologicalcommunity.

A differentissueis automaticproductionof diatomdrawings.Diatomtypespecimensaretraditionally
definedin thetaxonomicliteratureusingdrawingsand,althoughphotographshavebeenusedmuchmore
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often in the last 20 years,thereremaina significantnumberof generafor which drawings are more
appropriate.Automatingtheproductionof drawingswouldbeespeciallyusefulasit is a timeconsuming
anddifficult task(Figure1).

Figure1: A photographof a diatomvalve andadrawing of asimilar valve by abiologist.

In recentyears,the problemof finding a mappingbetweenphotographsanddrawings cameto the
attentionof computervision andcomputergraphicscommunities.For example,A.Hertzmannet al. [4]
learnthemappingthroughcorrespondenceof low-level pixel statisticsin a drawing anda photograph.
However, suchapproachesareunsuitablefor thetaskathanddueto their requirementfor anexactmatch
betweenthedrawingsandthephotographs,which is usuallynotavailablein biologicalmaterials.

Our approachis to transformthe high-dimensionalimagespaceof both photographsanddrawings
into a lower-dimensionalspacewhereonly relevant featuresarerepresented.We thenusethis spacefor
thecomparisonof differentspecimensaswell asfor automaticproductionof drawings.

In our researchwe go further by not only developing a systemcapableof identifying new diatom
specimens,but alsoproducingamodeldescribinglife cycle relatedvariationin theshapeandpatternof
multiple diatomspeciesandsuitablefor synthesisingexampledrawingsof thespecies.

In thisarticlewepresentmethodsfor analysingdiatomshapeandtexture,produceamodelrepresent-
ing variationof shapeandtexturein multiple diatomspecies,andillustrateour approachwith a number
of drawingsgeneratedautomaticallyfrom themodelandoriginalphotographs.Wefinishwith presenting
theresultsof identificationexperiments.

2 External contour analysis and synthesis

Many diatomvalvesaresufficiently flat to givearepeatableview in all photographs.Traditionally, when
analysingdiatomshape,diatomistsperformed2D contouranalysisin thisview. However, dueto various
reasonsit is notaneasytaskto extractthecontoursfrom photographsautomatically. Overlappingdebris
and diffraction effects may make it hard to locatethe contour. In the courseof ADIAC [1], several
sophisticatedmethodsfor contourextractionhave beendeveloped. In this articlewe usethe extracted
contoursprovidedto usfrom theADIAC project.

To representdiatomcontoursin acompactwaywe useFourierdescriptorsaswe explain in [5]. Thus
eachdiatomcontouris representedwith a 200 elementvectorconsistingof 100 amplitudevaluesand
100correspondingphaseanglesobtainedfrom Fourierdescriptors.It is possibleto reconstructtheshape
of thediatomfrom thesevalues,aswe do in [5].

3 Texture analysis

Our goal hereis to analysethe diatom silica shell patternsand representthem in a way suitablefor
synthesis.Thevarietyof patternsoccurringin diatomsis very great.A completesystemwould needto
performa seriesof teststo detectthe type of patternandthenchoosea suitablesetof analyticaltools
to measurethevaluesof appropriatepatternparameters.In theinitial systemreportedin this articlewe
restrictedourapproachto theanalysisof pennatediatomspecieswith striaepatternsontheirshells;most
diatomsareof this kind. Thestriaearetransverselinesof poresbetweenthesilica ribs comingout from

2
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thediatom’s long axes(raphe-sternumor sternum).Thepatternsformedby thestriaearecharacterised
by frequency andorientation.For simplicity, wemodelstriaeasstraight,which is agoodapproximation
in themajority of casesconsidered.

In ADIAC [1], Gaborwaveletswereusedto detectthe frequency andorientationof thestriaeandto
segmentthediatomshells.However, unlessthepatternorientationandfrequency areknown beforehand,
or their rangeis very limited, a largebankof filters needsto beapplied.In ADIAC, 28 filterswereused,
coveringa rangeof 4 differentorientationsand7 differentfrequencies.

Fourieranalysisprovidesa moregeneralapproachto detectingthe frequency andorientationof the
striaepatterns,andis moresuitablefor thepurposegiven the rangeof possiblefrequenciesandorien-
tations,thusit is our chosentool. We performanFFT within a sliding window of size48 x 48 at each
pixel insidethediatomcontour. Thissizeensuresthatat least3 striaefit insidethewindow (atour image
resolution)for robustdetectionof patternorientationandfrequency.

Figure2: Fromleft to right top down: a photographof a diatom,synthesiseddrawing, orientationmap,
frequency map,energy map(using48x48window), energy map(using2x48window), centralpartbor-
ders,fitted splinestogetherwith controlpoints.

For eachwindow we find the energy valuescorrespondingto the Fourier coefficients. Thenwe set
to zerotheDC Fouriercomponentaswell asthevaluescorrespondingto the frequenciesof 1 and1/2,
as we expect at least threestriae in eachwindow. We also set to zero the valuescorrespondingto
almosthorizontalorientations,aswe do not expectto find striaein suchorientations.Finally, we find
themaximumamongtheremainingFFT energy valuesto give theorientationandfrequency. Thuswe
obtainthreemapsfrom therun of theFFT. Thefirst onecontainsthestriaeorientationvaluesfor each
pixel insidethediatomcontour, thesecondcontainsthestriaefrequency for eachpixel insidethediatom
contour, and the third map containsenergy values(FFT amplitude)for eachpixel inside the diatom
contour(Figure2). Weusethesemapsata laterstageto find theaveragestriaeorientationandfrequency
valuesin differentareasof adiatom.

Apart from knowing the striaeorientationandfrequency, we alsoneedto detectthe bordersof the

3
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centralareaof thediatomwith no striae(thesternumor raphe-sternum).Theenergy mapgivesussome
ideaof wheretherearestriae.However, its bordersarehardto pinpointdueto thesizeof theslidingFFT
window. We performa secondwindowedFFT on thewhole image,this time usinga window of size2
x 48, finding thelargestpeaksin theFourierdomainin thesameway asbefore.However, this time we
areonly interestedin theenergy map. We find theverticalbordersof thecentralareaby traversingthe
energy valuesin eachcolumnof themapup anddown from thecentre,looking for thefirst valueabove
the threshold,which we setat threequartersof the averageenergy valueover the whole energy map.
Finally, wefit asetof cubicsplinesinto thetopandbottomborders,thusdescribingeachborderwith 19
splinecontrolpoints.

To obtainparametervaluescharacterisingthetexture,wesplit theinsideof thediatomcontourinto 12
parts,6 above thesternumand6 below. Thebordersof thepartsaredeterminedby splitting thecurves
approximatingthetop andthebottombordersof thecentraldiatomareainto equallengths.We find the
averageorientationandfrequency insideeachof thesepartsasthe weightedaverageof all orientation
andfrequency values,wheretheweightsarethecorrespondingenergy values.

The internalpatternof eachdiatomis describedusinga 100 elementvector, where76 elementsare
thecoordinatesof the38 controlpointsandanother24 valuesareorientationandfrequency values.

In conclusion,we would like to point out thatthemethodpresentedabove is suitablefor theanalysis
of diatomsrepresentedin bothphotographicanddrawing form.

4 Texture synthesis

To draw the internalstructureof thediatom,we draw linesrepresentingthestriaebetweentheexternal
contourand the sternumborders. This is doneusing the averageorientationand frequency valuesin
severalareasinsidethediatomcontour.

To modelor mimic actualvalvessatisfactorily, therequirementsfor thegeneratedstriaearethatthey
shouldhave theappropriateorientationandfrequency values,andshouldbecontinuousacrosseacharea
of differentorientationandfrequency. For example,if two striaedivergetoofar from eachother, another
striashouldappearin between,or if they converge,eventuallythey shouldeithermergeor oneof them
shoulddisappear.

In our synthesisalgorithm we attemptto follow the way it is believed the diatom shell is formed
naturally[9]. Thestriaeareformedgradually, theonesnearthecentreof thediatomstartgrowing first
andmay be partially completedby the time the striaefurther away from the centrestartforming. We
attemptto modelthisprocessin our iterative synthesisalgorithmoutlinedbelow.

1. Startingat thecentreof thetop sternumborder, goingout towardstheright endof thediatomadd
onemorepixel to the lengthof all existing striae,keepingall striaeof orientationsappropriate
to the areasof the diatom they are locatedin, checkingthat they have not reachedthe diatom
contouryet andthat they arenot too close(lessthanhalf of thestriaespacingappropriateto the
correspondingareaof diatom)or too far (more than twice the striaespacingappropriateto the
correspondingareaof diatom)from theneareststriaon theleft. Thethresholdvaluesfor thestriae
spacingwerederivedexperimentallyto imitatetheunderlyingnaturalprocesses.

2. If thestriaon theleft is too closeto thecurrentstria,or thecurrentstriahasreachedtheexternal
contour, thenthecurrentstriabecomes“completed”,andin thatcaseno morepixelsareaddedto
it in thefuture.

3. If the stria on the left is too far away, then anotherstria is insertedbetweenthe two that have
divergedtoo far.

4. After wehaveconsideredall existingstriaeontheright from thecentre,andif wehavenotreached
thecontourof thediatom,we addonemorestriato theright of therightmoststriaat thedistance
appropriatefor thearea.

4
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Figure3: Photographsanddrawingsgeneratedautomaticallyfrom thephotographsof 13 species.The
speciesare in the following order: Caloneisamphisbaena,Cymbellahybrida, Cymbellasubaequalis,
Gomphonemaaugur, Gomphonemaminutum,Gomphonemaspecies1, Navicula capitata, Navicula
menisculus,Navicula radiosa,Navicula constans,Navicula rhynchocephala,Navicula viridula, Sell-
aphora bacillum.Pleasenotethattheoriginalimagesareveryhighresolutionandcontainhighfrequency
informationwhichmaynotbeadequatelyprintedor displayedon somedevices.

5
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5. Repeatall theabove stepsuntil all thestriaeare“completed”.

6. Repeatall theabovestepsfor theotherthreequartersof thediatomstartingat thecentreandgoing
out towardstheendsof thediatomalongthetopor bottomof thesternum.

5 A model of shape and texture

Previously [5], we presenteda modelof shapevariationduringthelife cycle of severaldiatomspecies.
The modelwasbasedon a collectionof principal curves,whereeachcurve modelledthe growth tra-
jectory of a diatomspecies.Individual shapevariationswithin speciesaredefinedin the dimensions
orthogonalto theprincipalcurve.

Principalcurveswerefirst definedby HastieandStuetzle[3]. Intuitively, aprincipalcurve is asmooth
curve passingthroughthe“middle” of a datadistribution. Principalcurvesareestimatedrecursively for
a given dataset. In practicethe curvesareapproximatedwith a numberof knotsandlinear segments
connectingthem.

We have now extendedour earliermodelbasedon diatomcontoursto representdiatomtexture as
well. Prior to modelling the diatomshapeand texture data(the set of parametervaluesdescribedin
Sections2 and 3, for all specimensfrom all species)we normalisethe datato have zero meanand
standarddeviationof one.Wefind mainmodesof variationin thedataof all speciesthroughPCA.Then
wemodelthelife cycleshapeandinternaltexturevariationin eachspeciesusingaprincipalcurvegoing
throughthemiddleof thecorrespondingdataset.Thisapproachallowsusto extendthemodelto include
anew specieseasily, which is moredifficult for adecision-baseddiatomidentificationmethod[1].

6 Experiments

6.1 Diatom analysis and automatic drawing generation

Our testdataincludesover 300 photographsof 13 differentspecies,namely, Naviculaconstans,Sell-
aphora bacillum,Navicularhynchocephala,Gomphonemaaugur, Cymbellahybrida,Cymbellasubae-
qualis,Naviculacapitata,Caloneisamphisbaena,Naviculamenisculus,Gomphonemaminutum,Gom-
phonemaspecies1, Navicula radiosa,Naviculaviridula (examplesareshown in Figure3). We used
theseto producedrawings directly from eachphotograph.The quality of the produceddrawings de-
gradedgracefullywith decreasingquality of the original photographs.Pleasenote,that dueto the re-
ducedsizeof thephotographs,it maybedifficult to seethestriaeorientationandfrequency of Caloneis
amphisbaenain Figure3.

6.2 Building a model and reconstructing drawings from the model

For this experiment,we selectedthebestquality photographsdescribedin theprevioussectionto make
surethat the modelsproducedwere reliable and did not containany errorsfrom the analysisstage.
Thenumberof thespecimensin eachspeciessetrangedfrom

�
for GomphonemaaugurandNavicula

radiosato 20for Gomphonemaminutum, giving atotalof ����� specimens.Prior to usingprincipalcurves
to modelthediatomshapedata,we normalisedthedataandthenfoundthemainmodesof variationin
thedatasetof all speciesthroughPCA,asdescribedearlier.

Webuilt amodelof diatomshape,lengthandinternaltexturevariationoverthelife cyclesof theabove
13 speciesby fitting anindividual principalcurve to eachof theavailable13 datasets(Figure6.2).

In Figure5 we synthesisethe drawings of diatomsfrom the principal curve nodesdepictingthe di-
atomsatdifferentstagesin their life cycle. Notethattheremaybeno correspondingphotographfor that
stage– herethedrawingsaregeneratedsolelyfrom themodel,notdirectly from aphotograph.

6
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Figure4: Principalcurvesandthedatausedfor their training,projectedinto thespaceof threelargest
eigenvectors.Differentspeciesarerepresentedwith differentsymbols.

Figure5: Someof theGomphonemaminutumphotographsusedfor trainingaprincipalcurveanddraw-
ingsgeneratedautomaticallyfrom theprincipalcurve at otherstagesof thelife cycle.

6.3 Identifying diatoms from photographs and drawings using our model

Thefirst experimentconsistedof identifying diatomswhoseimageswerenot usedfor constructingthe
model.For thisexperimentweusedthestandard“leaveoneout” approach,wherethemodelwastrained
on all thespecimensapartfrom oneandtheremainingspecimenwasidentifiedusingthetrainedmodel.
We repeatedtheexperimentomitting eachspecimenout of the total 178usedin Section6.2. We com-
paredtheidentificationaccuracy betweena modeltrainedon thediatomshapeandlengthdata,a model
trainedon thetexturedataonly, andamodeltrainedon shape,textureandlengthdata.

Theerrorratewhenusingtheexternalcontourandlengthdatawas19.66%.For thetexturedataonly,
theerrorratewas6.18%.Usingshape,textureandlengthdatatheerrorratedecreasedto 3.37%,which
is a significantimprovementto using either contouror texture dataalone,and is similar to the error
rateachieved in theADIAC projectin similar experiments.However, thedatasetusedin theADIAC
includeda largernumberof species,someof whichhadnon-striaepatterns.

We usedseveral otherstandardclassificationmethodson the samedataset in leave-one-outexper-
imentsfor comparisonwith our model. Using a supportvectormachine(SVM), developedby Ryan
Rifkin at MIT’ s Centerfor Biological andComputationalLearningwith a linearkernelgave usa clas-
sificationerror rateof 6.18%on the normaliseddata,anda 19.1%error ratewasachieved usingOC1
decisiontreeapproach[8] on theraw datawithoutprior normalisation.

To identify a diatomin a drawing we usedthesameprocedureasfor thephotographs.We obtained
parametervaluesby imageanalysisof sevendrawingsof sevendifferentdiatomspeciesalsorepresented
in theabovephotographset.Fourdrawingswereidentifiedcorrectly. In thetwo outof threemisidentified

7
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drawings, thestriaefrequency wasfound to bedoublethe real valuedueto theartistic techniqueused
in the drawings. After we manuallycorrectedthe frequency valuesfor thesedrawings, onemorewas
identifiedcorrectly.

7 Evaluation and future work

We have presenteda meansof modellingshape,lengthandtexturevariationin multiple diatomspecies.
Themodelis built from dataautomaticallyextractedfrom photographs,andis basedon diatomfeatures
whicharepresentin bothphotographsanddrawingsandusedfor diatomidentification.

Themodelis suitablefor identificationof previously unseendiatomsrepresentedin photographicor
drawing form. It is alsosuitablefor reconstructingdrawingsof diatomsatany stagesof their life cycles,
includingthosenotexplicitly representedin theoriginal trainingset.

We have presenteddrawingsproducedby our methodsandtheresultsof identificationexperiments.
Identificationexperimentsachieveda similaraccuracy to thoseresultingfrom theADIAC project;how-
ever, ADIAC datasetwaslargerandincludedsomediatomswith non-striaepatterns.

Currently biologistsare working on applying the systempresentedto classificationproblemsin a
biologicalcontext (taxonomy).
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Abstract

This paper presents a new algorithm for synthesising image texture. Texture synthesis is an im-
portant process in image post-production. The best previous approaches have used non-parametric
methods for synthesising texture. Unfortunately, these methods generally suffer from high computa-
tional cost and difficulty in handling scale in the synthesis process. This paper introduces a new idea
of using wavelet decomposition as a basis for non-parametric texture synthesis. The results show an
order of magnitude improvement in computational speed and a better approximation of the dominant
scale in the synthesised texture.
Keywords: Texture Synthesis, Complex Wavelet Transform, Image Processing, Non-parametric Im-
age Modeling.

Figure 1: Texture synthesis: Given an example texture Ie as an input (left), the algorithm aims to reproduce new
texture Is (right).

1 Introduction

The problem of texture synthesis has been an active research topic in recent years [5, 4, 15, 10]. Given
an example of texture as a small subimage, the idea is to create a much larger image by synthesising
more texture. Figure 1 shows on the left a typical example image or “seed” of size 128 × 128 and on
the right is the synthesised image of size 256× 256 created by surrounding this “seed” with new texture.
This kind of operation is often required in the post-production of digital images when a large area is
to be covered with texture that looks like some smaller example. Picture editing often requires filling
of missing information and texture synthesis processes like these can fill such holes with reasonable
material.

The essential idea is to somehow estimate the p.d.f. of the image intensity I(x), denoted by P (I(x))
at a pixel site x = (i, j). The process of texture synthesis is then a matter of drawing a random sample
from that distribution. What makes this difficult is estimating P (I(x)). Two different approaches have
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emerged. Parametric techniques attempt to model P (I(x)) with some definable process. Heeger and
Berger [6] analyse texture using histograms of filter responses at multiple scales and orientations. Portilla
and Simoncelli [11] improve on this idea by matching pairwise statistics across different scales and
orientations. Kokaram [10] uses an autoregressive model when synthesising texture. All of these methods
work well on simple textures but fail for more structured textures [11]. Non-parametric approaches
rather, attempt simply to measure the p.d.f. from the image. The visual quality of the generated textures
will be influenced primarily by the accuracy of the model, while the efficiency of the sampling procedure
will be directly related to the computational expense [15]. Because of the wide variability in image
behavior non-parametric approaches have achieved by far the more visibly pleasing results [5, 15, 1, 14,
2].

Most of the non-parametric methods rely on an idea introduced by Efros and Leung in 1999 [5]. Their
approach was based on empirical measurement of the p.d.f. of a pixel using neighbourhood similarity.
This method assumes texture can be modeled by a Markov Random Field (MRF), i.e. the intensity value
for a pixel given the intensities of its spatial neighbourhood is independent of the rest of the image.
The p.d.f. P (I(x)) is then sampled and the newly assigned pixel is assigned to the synthesised image.
This algorithm generates impressive results and works well on a large range of textures. However,
computational cost is high because an entire search of the sample image is necessary for each of the
pixels to be synthesised. In addition, the success of the algorithm is dependent on the correct choice of
neighbourhood size. This user defined parameter controls the randomness of the texture to be generated.

Ashikhmin [1], Bornard [2] and Pei et al. [14] address the computational burden of the Efros algorithm
by introducing coherent searching into the synthesis procedure. This speeds up the synthesis process by
eliminating the need to search every possible neighbourhood in the sample image. Wei and Levoy [15]
develop the algorithm further to include multi-resolution synthesis. They use Gaussian pyramids to
represent the texture and transform a random noise sample to resemble the sample texture at different
levels of the Guassian pyramid. This method works well on stochastic (random) textures but is not
suitable for deterministic (structured) textures [4].

In order to explore the problems of scale and computational load associated with non-parametric
methods, we have introduced the novel idea of using the complex wavelet transform as a basis for non-
parametric texture synthesis. The introduction of the wavelet decomposition into the synthesis procedure
has two advantages. Firstly, it facilitates the measurement of texture statistics at particular scales. Unlike
previous methods, who use scale information as a control [15], we directly synthesise texture at these
different scales. This allows us to exploit the dominant frequencies present in the texture image. The
second advantage of our method is the reduction in computational load. By synthesising texture at coarser
scales, the original information is represented by fewer pixels. Large features which were present at a fine
scale, are now much smaller and can be represented by smaller neighbourhoods. Synthesising texture at
these coarser scales is much more computationally efficient than synthesising texture at a fine scale. This
is due to the reduction in size of the image to be synthesised (sub image of original image). In addition,
because large features can be represented by smaller neighbourhoods, the neighbourhood size is reduced
considerably thus improving computational cost further.

The following sections outline the single resolution non-parametric algorithm and illustrate how
wavelet decomposition may be used as a basis for this non-parametric texture synthesis. A comparison
is given between our proposed method and the best previous approaches. This comparison is based on
computational load as well as visual texture results. Finally, advantages and limitations of our algorithm
are presented.

2 Single Resolution Texture Synthesis

Let Xs represent the image grid of size M × N to be synthesised and Ie be the sample input image of
size m×n specified on the smaller grid Xe. The algorithm assumes that Ie is large enough to capture the
statistics of the underlying infinite texture. Let p ∈ X be a pixel to be synthesised and w(p) be the spatial
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neighbourhood of pixels surrounding p with width w. To synthesise a value for p an approximation to
the conditional probability distribution P (p|w(p)) is constructed and then sampled. The approximation
is built by directly identifying all patches in the sample image that are perceptually similar in some way
to the existing neighbourhood around the pixel to be synthesised. The pixels at the centre of these similar
patches then represent an empirical measurement of the p.d.f. required.

Let d(w(p1), w(p2)) denote the perceptual distance between two neighbourhoods or patches centred
at locations p1 and p2. d is defined to be the sum of squared intensity differences. The best matching
patch wbest in the sample image, is first found, wbest = argminx∈Xe

d(w(p),x). All example image
patches w with d(w(p), w)) < (1 + ε)d(w(p), wbest) are included in the set Ω(p). In this application
ε = 0.1. The centre pixel values of patches in Ω(p) gives a histogram for p which can then be used to
obtain a sample numerically. To preserve the local structure of the texture, the error for pixels near the
centre of the neighbourhood i.e. that corresponding to p, is larger than that for pixels close to the edge of
the neighbourhood. This is achieved by weighting the distance measure d(·, ·) with a two-dimensional
Gaussian Kernel. A kernel with variance w/6.4 is used.

In practice it is sensible to visit pixels in the synthesised image in an order specified by the number
of known spatial neighbours. The algorithm initially seeks out pixel p ∈ Is with the most known spatial
neighbours. As some of the spatial neighbours of p are unknown, the distance measure is modified to
match only the known values in w(p). This error is then normalised by the total number of known pixels
when computing the conditional p.d.f. for p. Figure 2 illustrates an overview of this searching procedure.

Figure 2: For each unknown pixel p in the synthesised image Is (right) the algorithm searches all possible
neighbourhoods in the sample image Ie (left) for a neighbourhood similar to that of the pixel p. It then randomly
chooses a matching neighbourhood and takes its centre to be the newly synthesised pixel.

Problems with boundary conditions are avoided by either treating the boundaries toroidally or padding
with zeros. Here all boundaries were padded with zeros. The above algorithm generates impressive
results on a wide variety of textures. However, searching the entire sample image for each pixel is
computationally expensive and slows the algorithm considerably. A breakdown of the computational
cost is given in section 3.2. In addition, the user defined neighbourhood width is critical to successful
texture synthesis. To address these problems and also demonstrate the power of wavelets, the complex
wavelet transform has been incorporated into the synthesis process.

3 Synthesising Texture using the Complex Wavelet Transform

The Dual Tree Complex Wavelet Transform (DT-CWT) originally proposed by Kingsbury has received
much interest in image processing applications recently [8, 9, 13, 3, 7]. It builds upon the orthogonal
Discrete Wavelet transform (DWT) and addresses some of its limitations such as, lack of shift invariance
and poor directional selectivity [9]. The DT-CWT uses a dual tree of wavelet features that are assigned as
real and imaginary components of complex wavelet coefficients. A full explanation of how the wavelet
transform operates is beyond the scope of this paper but the interested reader is directed towards [9, 12]
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for some supplementary material. As an outline however, the biorthogonal 2D DWT produces three band
pass sub images at each level of the transform. These correspond to the lo-hi, hi-hi, hi-lo. The lo-lo sub
image is passed onto the next level of the transformation. It is found that with real images, most of the
significant information is contained within the first and second quadrants of the spectrum [13]. The 2D
DT-CWT exploits this by producing three band pass sub images in each of the spectral quadrants 1 and
2. This gives a total of six band pass images with complex coefficients at each level. These images are
strongly oriented at angles of ±15o,±45o,±75o. Figure 3 shows the complex wavelet decomposition
of an image containing a single bright circle. The sub band and lowpass images for the first level of
decomposition are shown. The figure illustrates the directional sensitivity of the transform since different
bands emphasise different parts of the circle contour. The DT-CWT gives a 4:1 redundancy for 2D
images,. In a sense it is this redundancy that allows both shift invariance and good directional sensitivity.

Input Image Lowpass 75 degrees 45 degrees

15 degrees −15 degrees −45 degrees −75 degrees

Figure 3: Illustration of sub image produced using DT-CWT. Figure shows input image (top left), lowpass image
(top middle) and the bandpass images.

3.1 Algorithm

Given the initial sample image Ie of size n × m and the required output size N × M of the image to be
synthesised Is, the algorithm proceeds as follows.

• The n level complex wavelet transform is performed on the example image Ie. Using the initial
dimensions of the image to be synthesised Is, the dimensions of each of the sub band images and
the final lowpass image are calculated. A sample of Ie is placed at the centre of each of the sub
images of Is. The size of the sample used should be consistent among the levels, i.e. at level n
the seed should be half that used at level n − 1. This is because of sub sampling in the wavelet
transform. This sample is then surrounded by negative ones to indicate wavelet coefficients values
to be synthesised.

• At the highest level, which is the coarsest level in terms of detail, the Efros searching algorithm
given in section 2 is used to synthesise unknown wavelet coefficients in each of the six sub band
images. In order to account for the correlation among sub band images and to maintain the effi-
ciency of the algorithm, each of these images are searched coherently. That is, the same wavelet
coefficient coordinate in each image is synthesised in parallel. Neighbourhoods from the six sub
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band images and with the same centre coordinates are represented by a vector. The distance be-
tween two neighbourhoods is then given by the difference in magnitude between the two vectors
representing them.

• Once the chosen wavelet coefficient has been selected from the sample image Ie, the six sub
band images at the highest level are updated. Wavelet coefficients on the levels below follow
the movement at the top level. This relationship is shown in Figure 3.1. That is, the wavelet
coefficient at position (i, j) at level n corresponds to coefficients (2i, 2j), (2i− 1, 2j), (2i, 2j − 1)
and (2i − 1, 2j − 1).

• This process is repeated for all unknown wavelet coefficients at the highest level. Once all of
the wavelet coefficients have been generated, the synthesised image is inverse transformed to give
an image that should resemble that of the sample texture. Note that, in order to avoid problems
with boundary conditions, it is necessary to pad each sub image with zeros before performing the
algorithm. This padding should be removed prior to inverse transform.

The above steps are based on generating grayscale images. To synthesise colour textures, first trans-
form the image from the rgb colour space to the yuv colour space. Perform synthesis on the y (lumi-
nance) component and then propagate relevant coordinates to u and v components.

Figure 4: Simplified sub image of the DT-CWT showing the relationship between the wavelet coefficients across
the different levels.

3.2 Computational Load

In order to demonstrate the advantages of our algorithm in terms of computational cost we have compared
it against the original Efros algorithm [5]. Given a sample image Ie of size m × n and the image to be
synthesised Is of size M × N . Let p ∈ Is be a pixel to be synthesised and let w be the width of the
neighbourhood of the square spatial neighbourhood surrounding p. For each pixel to be synthesised in
Is, the algorithm needs to search up to nm locations. At each of those locations, 4w2 operations need
to be performed to calculate the weighted sum squared difference. This is 4nmw2 operations in total
for each searched site. Therefore to generate Is of size M × N the algorithm will have to perform
4NMnmw2 operations.

In comparison, the algorithm proposed in this paper synthesises texture at the third level of the com-
plex wavelet transform. At this level the dimensions of the sample image are nm/16 and the image to
be synthesised are NM/16. Since all the six sub images at this level must be searched, the total number
of operations is given as NM/16× nm/16× 4w2

1
× 6. Here w1 is the neighboiurhood size for this pro-

cess and is typically smaller than that needed for the Efros algorithm. The load for the CWT is roughly
80NM and is negligible in comparison to the overall load. Therefore the overall computational load of
the new CWT algorithm is given by NMmnw2

1
/10. This shows that the new algorithm is faster than the
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original Efros algorithm by a factor 40w2/w2

1
. For the experiments shown in this paper w = 11, w1 = 5

yielding an improvement of a factor of about 200.
Using a simple Matlab implementation for a grayscale image on a 2.4 GHz P4 PC, the CWT algorithm

can generate a 256×256 image from a sample texture measuring 128×128 in approximately 60 seconds.
For a colour image, this process takes just over 80 seconds.

4 Results

Synthesised images generated by the wavelet synthesis algorithm are shown in Figures 5 and 6. In order
to demonstrate the effectiveness of the algorithm, it was tested on a wide range of different textures. A
visual comparison of the results obtained using other approaches was also carried out. Some of these
results are shown in Figure 6. In each case the sample image measured 128 × 128 pixels and the syn-
thesised image measured 256 × 256 pixels. When using complex wavelets, it is optimal to use image
sizes that are powers of 2. Texture synthesis was carried out at level 3 of the complex wavelet with a
neighbourhood size of 5 × 5 pixels.

As can be seen from Figure 6, the wavelet texture synthesis algorithm compares well against results
obtained using the Wei and Levoy [15] and Efros and Leung [5] methods. The Wei and Levoy algorithm
is similar to the method proposed here in that it is based on multiresolution synthesis. In their case they
use Gaussian pyramids to separate the image into various frequency bands. When synthesising a pixel
they begin initially at the top level and work their way down the pyramid. The neighbourhood of each
pixel incorporates those pixels situated a level above on the pyramid. This allows for correlation among
the sub images. However, it implies that the neighbourhood size is large, thus slowing down the process.
Their tree vectorisation overcomes this but synthesising the entire Gaussian pyramid one pixel at a time
is still computationally expensive.

The synthesised text in Figure 5 shows the impact of scale in texture synthesis. Because the algorithm
synthesises at level 3 of the complex wavelet transform, whole words are synthesised rather than letters.
This clearly demonstrates the effect of scale. At high levels of the transform, large features (words) are
represented by fewer pixels. By synthesising texture at this level, words rather than individual letters are
generated. Because the Efros method synthesises on a fine scale it will grow letters rather than words.
That is, it grows the texture rather than the individual text.

Visually the textures generated using our CWT method compare well against the sample texture.
However, following close inspection, there is some blurring present in the synthesised texture. This is
more perceivable in sharp textures than others, e.g. the text. This problem is due to using the coarse level
synthesis to direct the synthesis of the other levels, thus the detail at the finer levels is not refined. In
addition, if the original sample image is compressed then these compression articfacts will be propagated
in the synthesised image thus leading to more visual errors. Resolving this problem is the direction of
current work.

5 Final Comments

In this paper a new texture synthesis algorithm was introduced. Given an initial sample image, the
algorithm generates new texture using a simple searching process and which incorporates the Dual Tree
Complex Wavelet Transform (DT-CWT). Results show that the algorithm works well on a wide variety
of textures and has the advantage of reduced computational cost. By exploiting the properties of the
DT-CWT, the algorithm also addresses some the problems of scale and correct neighbourhood size.
Future work involves addressing some of the blurring problems associated with the output results. This
will involve refining the pixel choice rather than just copying and adjusting the coordinates from those
attained at the highest level.

39



REFERENCES Claire Gallagher et al.

Figure 5: Results from the texture synthesis. The left hand image is the original image while the right is the
synthesised image. Textures were synthesised on the third level of the transform.
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Abstract

We present a morphological approach to the reconstruction of fine branching structures in three
dimensional data, developed from the basic procedures of reconstruction by dilation. We address a
number of closely related questions arising from this reconstruction goal, including issues of struc-
turing element size and shape, noise propagation, iteratedapproaches, and the relationship between
geodesic and conditional dilation. We investigate and assess the effect and importance of these con-
siderations in the context of the overall reconstruction process, and examine the effectiveness of the
approach in addressing the task of reconstructing narrow branch features in noisy data.
Keywords: Mathematical morphology, Reconstruction by dilation, St ructuring element, Geodesic
dilation, Conditional dilation

1 Introduction

The classical reconstruction by dilation procedure [8, 10] is an effective and much utilised image pro-
cessing tool applied extensively in the segmentation and classification of complex scenes [1, 2, 4, 6].
Seeded regions are retained while neighbouring unseeded regions areattenuated to the intensity level of
the surrounding background data. The approach yields excellent results in isolating compact regions in
noisy data. However when the regions of interest include fine branchingstructures the approach performs
less well, especially in the presence of noise. This behaviour is due to the geodesic growth properties at
the heart of the definition of reconstruction by dilation. The geodesic dilations which constitute a recon-
struction by dilation guarantee that there exists a connected, strictly uphill (interms of pixel intensity)
path from each sample point to one of the original set of seed points which initiated the procedure. This
property is what achieves the suppression of non-seeded high intensityregions.

The difficulty arises when a narrow element is encountered in a seeded region. Any signal drop-
off along the narrow branch (due to noise or transitory signal reduction) can result in an undesirable
attenuation of the intensity level along the entire remainder of the branch length. This is not an issue
in the reconstruction of more compact regions as there will exist some convoluted high intensity path to
carry the signal past the blockage. As the features in the region to be reconstructed become more and
more narrow the chances of encountering a signal drop-off which cannot be negotiated at the higher
signal intensity level increase. In the case of fine branches, where thehigh intensity path is only one or
two pixels wide the likelihood of undesirable signal suppression becomes extreme, leading to incomplete
reconstruction of the desired objects.

In order to counter this difficulty we propose a non-geodesic extension tothe reconstruction by dilation
procedure aimed at bridging small gaps in the high intensity path while still effectively suppressing the
signal intensity in neighbouring regions. The approach has the additionaldesirable property of preserving

∗Corresponding author.E-mail address: kevin.robinson@eeng.dcu.ie

42



Kevin Robinson et al

more fully the textural information in the reconstructed regions and suppressing the stepped contour
effects which otherwise often manifest. These properties can be beneficial in terms of both the analysis
and visualisation of the processed data.

The motivation for this work stems from a project whose aim is the segmentation of a ductal system
called the biliary tree from a class of medical MRI scans of the abdomen. SeeFigure 1 for a maximum
intensity projection (MIP) rendering of the three dimensional data from onesuch MRI scan. The ductal
tree is clearly visible along with a number of occluding high intensity structures which we wish to
suppress. Successful isolation of the finer branches towards the periphery of the tree is highly dependant
on suppression of the high intensity proximal structures in the scene.

Figure 1: Illustration of the ductal tree whose segmentation is the ultimate goal. Neighbouring high
intensity structures complicate the task.

2 Method

2.1 Morphological dilation operators

We first review the definitions of and the differences between dilation, conditional dilation, and geodesic
dilation in greyscale data [7, 8]. Standard greyscale morphological dilation, δ(N) is achieved where each
sample point in the output is set equal to the maximum of it’s own input intensity value and the values of
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all sample points within a given neighbourhood in the source:

δ(N)I =̂ ∀p : D • ∀q : NG(p) • (q ← max(p, q)) (1)

whereD is the image domain andN signifies the ‘size’ of the dilation, represented in terms ofNG, the
set of neighbouring samples constituting the structuring element to be applied inthe dilation. Thus we
can say, for all sample pointsp in the domain, for all sample pointsq in the neighbourhood ofp, the
output atq becomes the larger ofp andq.

Conditional (δ⋆(N)
C ) and geodesic (δ(N)

C ) dilations are then easily defined in terms of standard dilation
as shown in Eqs. 2 and 3 respectively, whereC represents the conditioning dataset, which must share the
same domain asI, and∧ is the point-wise minimum operator.

δ
⋆(N)
C I =̂ δ(N)I ∧ C (2)

δ
(N)
C I =̂ δ(1)I ∧ C . . .N times (3)

Thus we can see that while in conditional dilation the point-wise minimum is applied only once
after dilation to the full extent specified has been achieved, in geodesic dilation it is applied after each
application of the fundamental dilation operator, with the two steps being repeated the necessary number
of times. By applying the minimum at each iteration the procedure limits the growth of the dilated areas
so as to avoid jumping over low intensity background regions in the conditioningmask and growing into
unseeded neighbouring high intensity regions.

This behaviour is illustrated in Figure 2, where fig2c shows the standard (unconditional) dilation
iterated until stability, which results in the entire domain arriving at the intensity level of the brightest
sample point present in the marker (fig2a). Fig2d illustrates that the only difference between conditional
dilation iterated until stability and the conditioning mask used to generate it, (fig2b)is that all sample
points in the mask of a higher intensity than the highest intensity sample point in the marker have been
capped at that maximum marker intensity level. Lastly fig2e shows geodesic dilations iterated until
stability, of marker fig2a conditioned on mask fig2b, (the definition of reconstruction by dilation). The
seeded region is retained while neighbouring regions are suppressed.

(a) Marker (b) Mask (c) Unconditional (d) Conditional (e) Geodesic

Figure 2: A comparison of standard, conditional, and geodesic dilation using an elementary two dimen-
sional, eight connected structuring element, iterated until stability.

2.2 Hybrid reconstruction

As the caption in Figure 2 states the structuring element used in this example is an elementary two
dimensional, eight connected structuring element. If the extents of the structuring element used in the
dilation process reach beyond the innermost shell of sample points surrounding the origin the filter is
no longer geodesic and cannot be used to perform reconstruction by dilation in the strictest sense of its
definition. The procedure would amount to the application of more than one elementary dilation for
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each application of the minimum operator (see Eq. 4). The manipulation of structuring elements is an
important topic in this field [3, 5, 9], and proves valuable in the development of our procedure here.

δ
h(N,n)
C I =̂ δ(n)I ∧ C . . . N times (4)

This hybrid reconstruction of Eq. 4 has the potential to achieve the behaviour which we wish to utilise
in our reconstruction approach, as it will allow the dilation to extend beyond small regions of intensity
dropout, without breaching the more extensive low intensity valleys betweendisconnected neighbouring
regions. The more dilations applied per application of the point-wise minimum operator, the wider the
gaps which the reconstruction can cross. Thus we can see that there exists a family of reconstructions
for any given starting data, where the optimal solution can be chosen in termsof how much physical
separation exists at the point of closest proximity between seeded and unseeded regions in the data. So
long as this measure allows sufficient scope to bridge the gaps in the fine branch components of the
seeded regions, the reconstruction gaol can be successfully achieved.

2.3 Experimental procedure

We applied our approach to the isolation of a network of fine ducts in volumetricmedical imaging data
used to assess a region of the body in and around the liver. This network, called the biliary tree, collects
bile produced in the liver, and delivers it to the small intestine where it is usedin the digestive process.
Figure 3 shows an example of one of the volumetric datasets under examination: the three dimensional
data has been rendered in maximum intensity projection to illustrate the various regions visible, including
the biliary tree which we wish to isolate and other structures which are to be suppressed. Note the many
constrictions and signal voids visible in the branches of the tree. The ultimate goal of this work is to
assist the radiologist in assessing the condition and operation of this ductalnetwork. To this end we wish
to achieve a clear and unobstructed reconstruction of the tree in order to facilitate its easy and effective
examination and assessment.

We applied both standard reconstruction by dilation using 6, 18, and 26 connected structuring elements
(the three fundamental three dimensional structuring elements leading to geodesic reconstructions), and
we also applied a series of reconstructions utilising larger structuring elements. These larger elements
were constructed so as to achieve approximately isometric reconstruction onthe non-isometric volume
data which we are analysing. The data is isometric in thex andy directions, with voxel dimensions of
approximately 1.3mm each way, but in thez direction the voxel dimensions increase to 4.0mm. Thus
in order to achieve dilation more consistently in all directions an anisotropic (in voxel terms) approach
was preferred, so as to compensate for the non-cubic nature of the data. We found this to be the most
effective approach, maximising the amount of unconstrained dilation we could use between applications
of the minimum operator before the procedure starts to include unwanted structures in the reconstruction.

3 Results

We processed a number of datasets using both traditional geodesic reconstruction by dilation and our
hybrid reconstruction approach applied at varying strengths, and assessed the reconstruction results
achieved in each case. Figure 4 illustrates the superior intensity preservation characteristics of the hybrid
reconstruction approach in the processing of objects of interest which include fine branching features.
The level of retention achieved increases with the strength of the hybrid reconstruction applied.

We applied the series of reconstructions and then measured the degree ofintensity suppression in the
neighbouring unseeded regions and at the extreme ends of a number of target branches of varying widths
within the seeded regions. Figure 4 shows the variations in signal drop-off observed at two different
levels of our hybrid reconstruction, along with standard reconstruction by dilation. In this way we were
able to demonstrate the enhanced level of reconstruction achieved using large anisotropic structuring
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Figure 3: Maximum intensity projection of one of the datasets examined in the study demonstrating the
biliary tree along with numerous unwanted high intensity regions.
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(a) Original (b) Geodesic (c) 38 Anisotropic (d) 54 Anisotropic

Figure 4: Two sections through a volume dataset showing branch tips at various levels of reconstruc-
tion demonstrating both fine and course branches: a) original unfiltered data, b) 6-connected geodesic
reconstruction by dilation, c) reconstruction using an anisotropic 38 element structuring element, d) re-
construction using an anisotropic 54 element structuring element

elements. Eventually as the size is increased beyond the optimal, the signal intensity in neighbouring
regions begins to pick up until in the extreme the reconstruction approximates the original unfiltered
data, with only the highest intensity peaks in the data being reduced to the levelof the highest intensity
sample points present in the original seed data.

In Figure 5 we can in addition observe the enhanced texture retention properties of our hybrid recon-
struction approach, where the second row of images achieved using traditional reconstruction by dilation
demonstrate excessive smoothing and the introduction of sharp graduations within the reconstructed tree,
while the images on row three show superior preservation of the fine detail from the original data (shown
on the top row). This can be of particular importance for the accurate interpretation of the final data by
the radiologist.

We also observed the role that noise in the data plays in propagating the high intensity signal across
background valleys. Once the approach departs from the geodesic scheme where a strict uphill intensity
path is always retained between any point and an original seed region, isolated high intensity noise
peaks in the background regions have the potential to piggyback the signal across the valleys like a
series of stepping stones. This effect makes strong salt and pepper noise particularly unfavourable in the
application of our technique. The nature of the noise distribution typical to our data makes the approach
more applicable in this case as even with very strong dilations the degree of theunwanted propagation
is kept to a manageable level due to the intensity and spatial spread presentin the signal noise which
means that the maintenance of a high intensity steppingstone path across valleys of any significant width
becomes extremely unlikely.

4 Conclusions

By extending the basic principles of reconstruction by dilation beyond the geodesic case we have pre-
sented a hybrid reconstruction technique specifically designed to optimally reconstruct objects containing
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(a) Volume Study 1 (b) Volume Study 2

Figure 5: Maximum intensity projections of two of the datasets from our study,preformed on the original
(top row), geodesic reconstructed (middle row), and hybrid reconstructed (bottom row) data volumes.
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fine branching structures in the source data while still effectively attenuating the signal from neighbour-
ing unwanted high intensity structures.

Through the application of these techniques we have developed an effective and efficient image pro-
cessing procedure which yields superior reconstruction results as a precursor to both further automated
segmentation, classification, and analysis, and enhanced and simplified manual review of the data by the
trained radiologist.
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Abstract

We report on the creation of a general-purpose discrete Fourier transform (DFT) quantisation
table that can be universally applied to digital hologram data of three-dimensional (3D) objects, with
the aim of efficiently compressing the data. We captured digital holograms (whole Fresnel fields)
of 3D objects using phase-shift interferometry. The complex-valued fields were decomposed into
nonoverlapping blocks of 8 × 8 (or 16 × 16) pixels and transformed with the DFT. The relative
importance of each of the blockwise DFT coefficients was traced throughout a digital hologram, and
over multiple holograms. We used rms error in the reconstructed image to quantify importance in the
DFT domain. We have found that DFT based quantisation gives one far more flexibility in choosing
the quality/compression rate trade-off than a rigid uniform quantisation approach. This is the first
blockwise DFT study to have been performed on digital holographic data and it has produced the
first quantisation table that could be suitable for a JPEG-style compressor for complex-valued digital
hologram data of 3D objects.
Keywords: three-dimensional image processing, image compression, digital holography, discrete
Fourier transform, JPEG

1 Introduction

Holography is an established technique for recording and reconstructing three-dimensional (3D) objects.
Digital holography [1, 2, 3, 4, 5, 6] has recently become feasible due to recent advances in megapixel
CCD sensors with high spatial resolution and high dynamic range. A technique known as phase-shift
interferometry [3, 5] (PSI) was used to create our in-line digital holograms [6, 7]. The resulting digital
holograms are in an appropriate form for data transmission and digital image processing (noise removal,
object recognition, and so on). A hologram encodes different views of a 3D object from a small range of
angles [8, 9]. In order to reconstruct a particular 2D perspective of the object, the appropriate region of
pixels must be extracted from the hologram and simulated Fresnel propagation applied [10, 5, 6]. It has
also been proposed to stream digital holograms over a network to generate a form of 3D video [11]. The
initial stages of such a proposal has involved the compression of individual holographic frames followed
by object reconstruction [11, 12]. A real-time optical reconstruction method using the complex field of a
digital hologram has also been demonstrated [13].

Given that each hologram is 65 Mbytes in size in its native format, real-time streaming of uncom-
pressed digital holographic data is impractical. Lossless compression techniques, based on Lempel-Ziv,

50



2 PHASE-SHIFT DIGITAL HOLOGRAPHY Mc Elhinney et al.

λ/2 λ/4

BE
M

A
r 

la
se

r

CCD

BS

BS

M

M

RP1 RP2

d

Figure 1: Experimental setup for PSI: BE, beam expander; BS, beam splitter; RP, retardation plate; M,
mirror.

Huffman, and Burrows-Wheeler algorithms, have been shown to perform poorly on digital holographic
data [11]. In order to facilitate more efficient transmission and storage of digital holograms, lossy tech-
niques based on quantisation have been applied in the past [11, 13, 12, 14]. Wavelets have also been
applied to digital holograms [15, 16], although not yet in the context of data compression. The perfor-
mance of baseline JPEG [17] (the standard JPEG implementation) has been shown to suffer greatly in the
presence of speckle noise [18, 19]. However, we believe that there is some potential in the JPEG-style
approach if it is tailored to digital hologram data. In this paper, we investigate the possibility of creat-
ing a quantisation table that can be universally applied to digital hologram data in a future JPEG-style
compressor. In future work we will look at a JPEG2000-like wavelet approach.

Hologram compression differs to image compression principally because our holograms store 3D in-
formation in complex-valued pixels [each pixel is a (8 byte, 8 byte) real-imaginary pair], and because of
the inherent speckle content which gives the holograms a white-noise appearance. Holographic speckle
is difficult to remove because it actually contains 3D information. Furthermore, a change locally in a
digital hologram (introduced during lossy compression, for example) will, in theory, affect the whole
reconstructed object. When gauging the errors introduced by lossy compression, we are not directly
interested in the defects in the hologram itself, only how compression noise affects the quality of per-
spectives of the 3D object reconstructed through simulated Fresnel propagation. We therefore use a
reconstruction plane metric to quantify the quality of our lossy compressed-decompressed holograms.

In Sect. 2, we describe how 3D objects are captured using phase-shift digital holography. We briefly
summarise the JPEG algorithm in Sect. 3 and determine which of our DFT components produces the
highest reconstruction-domain error in Sect. 4. The quantisation table is designed and evaluated in Sect. 5
and we conclude in Sect. 6.

2 Phase-Shift Digital Holography

We record Fresnel fields with an optical system based on a Mach-Zehnder interferometer (see Fig. 1).
A linearly polarized Argon ion (514.5 nm) laser beam is expanded and collimated, and divided into
object and reference beams. The object beam illuminates a reference object placed at a distance of
approximately d = 350 mm from a 10-bit 2028×2044 pixel Kodak Megaplus CCD camera. The linearly
polarized reference beam passes through half-wave plate RP1 and quarter-wave plate RP2. By selectively
removing the plates we can achieve four phase shift permutations of 0, −π/2, −π, and −3π/2. The
reference beam combines with the light diffracted from the object and forms an interference pattern in
the plane of the camera. At each of the four phase shifts we record an interferogram. We use these
four real-valued images to compute the camera-plane complex field H0(x, y) by PSI [3, 5]. We call this
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(a) (b)

(d) (e) (f)

(c)

Figure 2: The set of holograms used in these experiments: (a)-(e), reconstructed objects from holograms
no. 1 through no. 5, respectively; (f), the amplitude of an example 512 × 512 subset of digital hologram
no. 1.

computed field a digital hologram.
A digital hologram H0(x, y) contains sufficient amplitude and phase information to reconstruct the

complex field U(x, y, z) in a plane in the object beam at any distance z from the camera [5, 6, 10]. This
can be calculated from the Fresnel approximation [9] as

U(x, y, z) =
−i
λz

exp

(

i
2π

λ
z

)

H0(x, y) ? exp

[

iπ

(

x2 + y2
)

λz

]

, (1)

where λ is the wavelength of the illumination and ? denotes a convolution operation. At z = d, and
ignoring errors in digital propagation due to discrete space (pixelation) and rounding, the discrete recon-
struction U(x, y, z) closely approximates the physical continuous field U0(x, y).

Furthermore, as with conventional holography [8, 9], a windowed subset of the Fresnel field can be
used to reconstruct a particular view of the object. As the window explores the field a different angle
of view of the object can be reconstructed. The range of viewing angles is determined by the ratio of
the window size to the full CCD sensor dimensions. Our CCD sensor has approximate dimensions of
18.5 × 18.5 mm and so a 1024 × 1024 pixel window has a maximum lateral shift of 9 mm across the
face of the sensor. With an object positioned d = 350 mm from the camera, viewing angles in the range
±0.74◦ are permitted. Smaller windows will permit a larger range of viewing angles at the expense
of image quality at each viewpoint. Five digital holograms of different 3D objects were used in our
experiments. A reconstruction of each is shown in Fig. 2. Figure 2(f) shows the white-noise appearance
of the holograms themselves.

3 JPEG

The baseline JPEG algorithm can be summarised as follows [17, 18]. The image is subdivided into 8 ×
8 pixel blocks and each pixel value rescaled linearly to the range [−128, 127]. Each block is transformed
with the discrete cosine transform (DCT) and the transformed values are stored with 12 bits/pixel. The
DCT coefficients obtained are quantised to a lower precision with a user-defined 8× 8 quantisation table
of 8 bit values. Each DCT coefficient in the block is divided by its corresponding quantisation value
and rounded to the nearest integer. This rounding operation essentially performs the lossy compression.
The 64 DFT coefficients in each block are then coded losslessly. The values in the quantisation table
determine how finely or coarsely to quantise each DFT coefficient. A more coarse quantisation (higher
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Figure 3: Sequence of steps used to evaluate our compression-decompression routine. The error is mea-
sured between reconstructions from the original holograms (at the input of the sequence) and quantised
holograms (at the output of the sequence). Lossless compression (at the half-way stage) is used to get a
meaningful measure of the size of the quantised digital hologram.

values) results in an increase in degradation in the image, but allows the lossess steps to be more effective.
To reconstruct the image from this new form the lossless step is reversed, the implicit rescaling performed
by the quantisation table is undone, and each 8× 8 pixel block is inverse cosine transformed.

4 Blockwise analysis of discrete Fourier coefficients

Although digital holograms are complex-valued, the sequence of processes in baseline JPEG can still be
used when modified for this richer data type. Central to the JPEG algorithm is the quantisation table.
The table(s) in baseline JPEG were designed based on objective and subjective evaluation of compressed
versions of a wide range of images. Our digital holograms look like white-noise functions and are
not at all similar to the slowly spatially-varying continuous-tone images that JPEG was designed for.
Therefore it could be expected that JPEG would not perform well on such data. Furthermore, the DCT
is a simplification of the discrete Fourier transform (DFT) designed to output real-valued spectra on
real-valued arguments. We replace the blockwise DCT with a blockwise DFT and design a quantisation
table appropriate for digital hologram data. The application and evaluation of such a quantisation table
is summarised in Fig. 3.

In order to design a suitable quantisation table, we analyse the (complex-valued) DFT coefficients in
each block and rank these coefficients based on their relative influence on the final reconstructed object.
We used separately an 8×8 pixel blockwise DFT and a 16×16 pixel blockwise DFT in our experiments.
We used a 1024×1024 pixel window from each of our holograms so that the holograms could be divided
evenly into 8 × 8 pixel or 16 × 16 pixel nonoverlapping blocks. We blockwise Fourier transformed the
digital hologram, removed a particular coefficient from each DFT block, performed an inverse blockwise
DFT, reconstructed the 3D object through simulated Fresnel propagation, and recorded the error in the
reconstruction. The coefficient was removed by multiplying each transformed block of holographic data
by a 8 × 8 pixel (or 16 × 16 pixel) mask of 1’s that contained a single zero at the desired position. We
repeated this for each of the coefficients in the block, and for each of several digital holograms. Error
in the reconstruction U ′ was measured by a comparison with an equivalent reconstruction U0 from the
original digital hologram. The two reconstructions were compared in terms of normalised rms (NRMS)
difference in their intensities, defined as

D(U ′) =

(

Nx−1
∑

m=0

Ny−1
∑

n=0

[

|U0(m,n)|2 −
∣

∣U ′(m,n)
∣

∣

2
]

2

×

{

Nx−1
∑

m=0

Ny−1
∑

n=0

[

|U0(m,n)|2
]

2

}

−1)1/2

, (2)
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(a) (b)

Figure 4: Plots of the error resulting from removing one-by-one each coefficient of a blockwise 8×8 pixel
DFT of hologram no. 2: (a) grouped into rows, and (b) grouped into columns.

(a) (b)

Figure 5: Plots of the coefficients in the 8 × 8 pixel mean error table: (a) grouped into rows, and
(b) grouped into columns.

where (m,n) are discrete spatial coordinates in the reconstruction plane, and Ny and Nx are the height
and width of the reconstructions, respectively. The rms differences for one such hologram are shown
in Fig. 4. The larger the error introduced into the reconstruction, the more important that coefficient.
The rms differences for the five digital holograms were averaged to construct the mean error table of
DFT coefficients, shown in Figs. 5 and 6(a). The most interesting aspect of this error table is that the
coefficients at each of the four corners retain important digital holographic information, whereas for
standard continuous-tone images all of the important coefficients are located in a single corner close to
the dc coefficient. A 16×16 mean error table was similarly created, and revealed the same characteristic
structure [see Fig. 6(b)]. This meant that the manner in which we constructed the 8 × 8 pixel and 16 ×
16 pixel quantisation tables could be the same.

5 Quantisation table creation

The values in the mean error table were rescaled to the range [0, 1]. The higher the value is in this table,
the more important is that coefficient. The mean error table can be regarded as an indicator of the relative
importance of each DFT coefficient, and can be used as the basis for a quantisation table.

Applying this mean error table directly as a quantisation table will introduce a fixed amount of loss
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Figure 6: 3D plot of two mean error tables: (a) 8× 8 pixel, and (b) 16× 16 pixel.
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Figure 7: 8 bit quantisation table for 8× 8 pixel DFT compression.

into the digital hologram. In order to vary the loss, and indirectly vary the compression rate, we define
a function f to generate quantisation tables that takes three arguments: the aforementioned mean error
table q : {1, 2, . . . , 8}2 → [0, 1] (in the case of a 8×8 pixel blocks), a number of bits of resolution b ∈ N,
and an offset t ∈ N. b exponentially varies the coarseness of the quantisation and t linearly varies the
quality at a more fine level. f is defined as f(q, b, t) = bq × 2b−1 + 0.5c + t. The most straightforward
8 bit quantisation table for 8×8 pixel blocks is generated from f(q, 8, 0) and is shown in Fig. 7. Figure 8
shows 3D plots of three tables generated from f(q, 8, 0), f(q, 8, 24), and f(q, 8, 64).

The quantisation tables were applied to our digital holograms. In order to effect a final lossless com-
pression stage typical in JPEG algorithms, the quantised blockwise Fourier transformed digital holo-
grams were compressed with an implementation of the LZ77 algorithm [20]. Figure 9 shows plots of file
size against reconstruction NRMS error for two digital holograms and two quantisation table sizes. Each
curve (the curves labelled “nonuniform” in the legend) is a result of experimenting with several different
values for offset t. For comparison we include the results for uniform quantisation (the single points
labelled “uniform” in the legend). Although our DFT based quantisation does not outperform the com-
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(a) (b)

(c) (d)

Figure 9: Results of applying 8 bit DFT quantisation to hologram no. 1 with (a) 8 × 8 pixel table, and
(b) 16× 16 pixel table; and to hologram no. 2 with (c) 8× 8 pixel table, and (d) 16× 16 pixel table.

bination of uniform quantisation and lossless encoding, it does give one far more flexibility in choosing
the quality/compression rate than a rigid uniform quantisation approach. Furthermore, our knowledge of
the distribution of values in each 8 × 8 pixel block (more significant values in the corners, for example)
should allow us to perform a more efficient lossless stage in the future (similar to JPEG’s zig-zag DCT
ordering approach) than would be possible with uniformly quantised data.

The 1024 × 1024 pixel windows of each digital hologram that we used in these experiments required
16,384 Kbytes of storage space in uncompressed form, so a compressed size of 500 Kbytes (in Fig. 9)
corresponds to a compression rate of over 30. When LZ77 is applied to unquantised digital holograms it
achieves compression rates of less than 2.0 [11].

6 Conclusion

We have discussed the creation of a DFT based quantisation table that can be generally applied for the
compression of digital holograms of 3D objects. Our quantisation table was based on a study that ranked
each blockwise DFT coefficient in the hologram domain based on its importance to the reconstructed
domain. We have found that DFT based quantisation gives one far more flexibility in choosing the
quality/compression rate trade-off than a rigid uniform quantisation approach. Our quantisation table
could form the basis for a future JPEG-style compressor for complex-valued digital hologram data of 3D
objects. In future work we will look at a JPEG2000-like wavelet approach.
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Abstract 
A new method for hand gesture recognition is proposed which is based on an innovative 
Self-Growing and Self-Organized Neural Gas (SGONG) network. Initially, the region of the 
hand is detected by using a colour segmentation technique that depends on a skin-colour 
distribution map. Then, the SGONG network is applied on the segmented hand so as to 
approach its topology. Based on the output grid of neurons, palm geometric characteristics 
are obtained which in accordance with powerful finger features allow the identification of 
the raised fingers. Finally, the hand gesture recognition is accomplished through a 
probability-based classification method. 

 
Keywords: hand gesture recognition, colour segmentation, neural networks. 

1 Introduction 
Hand gesture recognition is a promising research field in computer vision. Its most appealing 
application is the development of more effective and friendly interfaces for human–machine 
interaction, since gestures are a natural and powerful way of communication. Moreover, it can be used 
to teleconferencing and telemedicine, because it doesn’t require any special hardware. Last but not 
least, it can be applied to the interpretation and the learning of the sign language. 

Hand gesture recognition is a complex problem that has been dealt with many different ways. 
Huang et al. [1] created a system consisting of three modules: i) model based hand tracking that uses 
the Hausdorff distance measure to track shape–variant hand motion, ii) feature extraction by applying 
the scale and rotation invariant Fourier descriptor and iii) recognition by using a 3D modified Hopfield 
neural network (HNN). Huang et al. [2] developed also another model based recognition system that 
consists of three stages as well: i) feature extraction based on spatial (edge) and temporal (motion) 
information, ii) training that uses the principal component analysis (PCA), the hidden Markov model 
(HMM) and a modified Hausdorff distance and iii) recognition by applying the Viterbi algorithm. Yin 
et al. [3] used a RCE neural network based colour segmentation algorithm for hand segmentation, 
extracted edge points of fingers as points of interest and matched them based on the topological 
features of the hand, such as the centre of the palm. Kjeldsen et al. [4] suggested an algorithm of skin 
colour segmentation in the HSV colour space and used a back–propagation neural network to recognize 
gestures from the segmented hand images. Herpers et al. [5] used a hand segmentation algorithm that 
detects connected skin–tone blobs in the region of interest. A medial axis transform is applied, and 
finally, an analysis of the resulting image skeleton allows the gesture recognition. 

In the proposed method, hand gesture recognition is divided into four main phases: the detection 
of the hand’s region, the approximation of its topology, the extraction of its features and its 
identification. The detection of the hand’s region is achieved by using a colour segmentation technique 
based on a skin colour distribution map in the YCbCr space [7-8]. The technique is reliable, since it is 
relatively immune to changing lightning conditions and provides good coverage of the human skin 
colour. It is very fast and doesn’t require post–processing of the hand image. Once the hand is detected, 
a new Self-Growing and Self-Organized Neural Gas (SGONG) [9] network is used in order to 
approximate its topology. The SGONG is an innovative neural network that grows according to the 
hand’s morphology in a very robust way. The positions of the output neurons of the SGONG network 
approximate the shape and the structure of the segmented hand. That is, as it can be viewed in Fig. 1(c), 
the grid of the output neurons takes the shape of the hand. Also, an effective algorithm is developed in  

This work was partially supported by “PITHAGORAS-Development and implementation of techniques for 
optimal color reduction in digital images” project.  
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order to locate a gesture’s raised fingers, which is a necessary step of the recognition process. In the 
final stage, suitable features are extracted that identify, regardless to the hand’s slope, the raised 
fingers, and therefore, the corresponding gesture. Finally, the completion of the recognition process is 
achieved by using a probability–based classification method.  

   

(a) (b) (c) 
Figure1. Growth of the SGONG network: (a) starting point, (b) a growing stage, (c) the final 

output grid of neurons 

The proposed gesture recognition system has been trained to identify 26 hand gestures. It has been 
tested by using a large number of gestures and the achieved recognition rate is satisfactory.  

2 Description of the Method 
The purpose of the proposed gesture recognition method is to recognize a set of 26 hand gestures. The 
principal assumption is that the images include exactly one hand. Furthermore, the gestures are made 
with the right hand, the arm is roughly vertical, the palm is facing the camera and the fingers are either 
raised or not. Finally, the image background is plain, uniform and its colour differs from the skin 
colour. 

The entire method consists of the following four main stages: 
• Colour Segmentation 
• Application of the Self-Growing and Self-Organized Neural Gas Network 
• Finger Identification 
• Recognition Process 

Analysis of these stages follows. 

2.1 Colour Segmentation 
The detection of the hand region can be achieved through colour segmentation. The aim is to classify 
the pixels of the input image into skin colour and non-skin colour clusters. This can be accomplished 
by using a thresholding technique that exploits the information of a skin colour distribution map in an 
appropriate colour space. 

It is a fact that skin colour varies quite dramatically. First of all, it is vulnerable to changing 
lightning conditions that obviously affect its luminance. Moreover, it differs among people and 
especially among people from different ethnic groups. The perceived variance, however, is really a 
variance in luminance due to the fairness or the darkness of the skin. Researchers, also, claim that the 
skin chromaticity is the same for all races [6]. So regarding to the skin colour, luminance introduces 
many problems, whereas chromaticity includes the useful information. Thus, proper colour spaces for 
skin colour detection are those that separate luminance from chromaticity components.  

The proposed colour space is the YCbCr space, where Y is the luminance and Cb, Cr the 
chrominance components. RGB values can be transformed to YCbCr colour space using the following 
equation [7-8]: 

 
16 65.481 128.553 24.966
128 37.797 74.203 112  
128 112 93.786 18.214

Y R
Cb G
Cr B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (1) 

Given that the input RGB values are within range [0,1] the output values of the transformation will be 
[16, 235] for Y and [16, 240] for Cb and Cr. In this colour space, a distribution map of the chrominance 
components of skin colour was created, by using a test set of 50 images. It is found that Cb and Cr 
values are narrowly and consistently distributed. Particularly, the ranges of Cb and Cr values are, as 
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shown in Fig. 2, = [80, 105] and = [130, 165], respectively. These ranges were selected very 
strictly, in order to minimize the noise effect and maximize the possibility that the colours correspond 
to skin.  
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(a) (b) 
Figure 2. Distribution of: (a) Cb component, (b) Cr component 

Let  and  be the chrominance components of the i-th pixel. If ibC irC ib CC R b∈  and , 
then the pixel belongs to the hand region. 

ir CC R∈ r

Finally, a thresholding technique completes the colour segmentation of the input image. The technique 
consists of the following steps. 

• Calculation of the Euclidean distance between the ,  values and the edges of  and 
, for every pixel. The distances are 

ibC irC CbR
CrR

• Comparison of the Euclidean differences with a proper threshold. If at least one difference is 
less than the threshold, then the pixel belongs to the hand region. The proper threshold’s value 
is taken equal to 18. 

The output image of the colour segmentation process is considered as binary. As illustrated in 
Fig. 3 the hand region, that is the region of interest, became black and the background white. The hand 
region is normalized to certain dimensions so as the system to be invariant of the hand’s size. It is 
worth to underline also, that the segmentation results are very good (almost noiseless) without further 
processing (e.g. filtering) of the image. 

  
(a) (b) 

Figure 3. (a) Original image, (b) Segmented image 

2.2  Application of the Self-Growing and Self-Organized Neural Gas Network 
The next stage of the recognition process is the application of the Self Growing and Organized Neural 
Gas (SGONG) [9] on the segmented (binary) image. 

The SGONG is an unsupervised neural classifier. It achieves clustering of the input data, so as the 
distance of the data items within the same class (intra-cluster variance) is small and the distance of the 
data items stemming from different classes (inter-cluster variance) is large. Moreover, the final number 
of classes is determined by the SGONG during the learning process. It is an innovative neural network 
that combines the advantages both of the Kohonen Self-Organized Feature Map (SOFM) and the 
Growing Neural Gas (GNG) neural classifiers.  

The SGONG consists of two layers, i.e. the input and the output layer. It has the following main 
characteristics: 

(a) Is faster than the Kohonen SOFM, 
(b) The dimensions of the input space and the output lattice of neurons are always identical. Thus, 

the structure of neurons in the output layer approaches the structure of the input data,  
(c) Criteria are used to ensure fast converge of the neural network. Also, these criteria permit the 

detection of isolated classes. 
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The coordinates of the output neurons are the coordinates of the classes’ centers. Each neuron is 
described by two local parameters, related to the training ratio and to the influence by the 
neighbourhood neurons. Both of them decrease from a high to a lower value during a predefined local 
time in order to gradually minimize the neurons’ ability to adapt to the input data. As it is shown in Fig. 
1, the network begins with only two neurons and it inserts new neurons in order to achieve better data 
clustering. Its growth is based on the following criteria: 

• A neuron is inserted near the one with the greatest contribution to the total classification 
error, only if the average length of its connections with the neighbor neurons is relatively 
large.  

• A neuron is removed if no input vector is classified to its cluster for a predefined number of 
epochs. 

• All neurons are classified according to their importance. The less valuable neuron is removed, 
only if the subsequent increase in the mean classification error is less than a predefined value. 

• A neuron is removed, if it belongs to an empty class. 
• The connections of the neurons are created dynamically by using the “Competitive Hebbian 

Learning” method. 
The main characteristic of the SGONG is that both neurons and their connections approximate 

effectively the input data’s topology. This is the exact reason for using the specific neural network in 
this application. Particularly, the proposed method uses the coordinates of random samples of the 
binary image as the input data. The network grows gradually on the black segment, i.e. the hand region 
and a structure of neurons and their connections is finally, created that describes effectively the hand’s 
morphology. The output data of the network, in other words, is an array of the neurons’ coordinates 
and an array of the neurons’ connections. Based on this information important finger features are 
extracted. 

2.3 Finger Identification 

2.3.1 Determination of the Raised Fingers’ Number 
An essential step for the recognition is to determine the number of fingers that a gesture consists of. 
This is accomplished by locating the neurons that correspond to the fingertips. Observations of the 
structure of the output neurons’ grid leads to the conclusion that fingertip neurons are connected to 
neighbourhood neurons by only two types of connections: i) connections that go through the 
background, and ii) connections that belong exclusively only to the hand region. The crucial point is 
that fingertip neurons use only one connection of the second type. Based on this conclusion, the 
determination of the number of fingers is as follows. 

• Remove all the connections that go through the background. 
• Find the neurons that have only one connection. These neurons are the fingertips, as indicated 

in Fig. 4.  
• Find successively the neighbor neurons. Stop when a neuron with more than two connections 

is found. This is the finger’s last neuron (root-neuron). 
• Find the fingers’ mean length (i.e. the mean fingertip and root neuron distance). If a finger’s 

length differs significantly from the mean value then it is not considered to be a finger. 

  
(a) (b) 

Figure 4. (a) Hand image after the application of the SGONG network, (b) hand image 
after the location of the raised fingers 
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2.3.2  Extraction of Hand Shape Characteristics 

Palm Region 
Many images include redundant information that could reduce the accuracy of the extraction 
techniques and lead to false conclusions. Such an example is the presence of a part of the arm. 
Therefore, it is important to find the most useful hand region, which is the palm. 

The algorithm of finding the palm region is based on the observation that the arm is thinner than the 
palm. Thus, a local minimum should appear at the horizontal projection of the binary image. The 
minimum defines the limits of the palm region as it is shown in Fig. 5. This procedure is as follows: 

• Create the horizontal projection of the image H[j]: 
• Find the global maximum maxH j⎡ ⎤⎣ ⎦  and the local minima min

iH j⎡ ⎤⎣ ⎦  of [ ]H j . 

  
(a) (b) 

Figure 5. (a) Horizontal projection, (b) Palm region 

• Calculate the slope of the lines segments connecting the global maximum and the local 
minima, which satisfy the condition . The minimum  that corresponds to the 
greatest of these slopes defines the lower limit of the palm region, only if its distance from 
the maximum is greater than a threshold value equal to ImageHeight/6.  

min max
ij j< lowerj

• The point that defines the upper limit of the palm region is denoted as  and is obtained 
by the following relation:   

upperj

 [ ] [ ] max   and   upper lower upper lowerH j H j j j j≤ > >  (2) 

Palm Centre 
The coordinates of the centre of the palm are taken equal to the mean values of the coordinates of the 
neurons that belong to the palm region. 

Hand Slope 
Despite of the roughly vertical direction of the arm, the slope of the hand varies. This fact should be 
taken under consideration because it affects the accuracy of the finger features, and consequently, the 
efficiency of the identification process. The recognition results depend greatly on the correct 
calculation of the hand slope.  

The hand slope can be estimated by the angle of the left side of the palm, as it can be viewed in Fig. 
6(a). The technique consists of the following steps: 

• Find the neuron LeftN , which belongs to the palm region and has the smallest horizontal 
coordinate. 

• Obtain the set of palm neurons setN that belong to the left boundary of the neurons grid. To do 
this, and for each neuron, starting from the LeftN , we obtain the neighborhood neuron which 
has, simultaneously, the smallest vertical and horizontal coordinates.  

• The first and the final neurons of the set setN  define the hand slope line (HSL) which angle 
with the horizontal axis is taken equal to the hand’s slope. 

The hand slope is considered as a reference angle and is used in order to improve the feature 
extraction techniques. 
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2.3.3 Extraction of Finger Features 

Finger Angles 
A geometric feature that individualizes the fingers is their, relative to the hand slope, angles. As it is 
illustrated in Fig. 6(b), we extract two finger angles. 

• RC Angle. It is an angle formed by the HSL and the line that joints the root neuron and the 
hand center. It is used directly for the finger identification process. 

• TC Angle. It is an angle formed by the HSL and the line that joints the fingertip neuron and 
the hand center. This angle provides the most discrete values for each finger and thus is 
valuable for the recognition. 

   
(a) (b) (c) 

Figure 6. (a) Hand slope and centre, (b) Fingers’ angles, (c) Distance from the 
centre 

Distance from the Palm Centre 
A powerful feature for the identification process is the vertical distance of the finger’s root neuron from 
the line passing through the palm centre and having the same slope as the HSL. An example is 
illustrated in Fig. 6(c). 

3 Recognition Process 
The recognition process is actually a choice of the most possible gesture. It is based on a classification 
process of the raised fingers into five classes (thumb, index, middle, ring, little) according to their 
features. The classification depends on the probabilities of a finger to belong to the above classes. The 
probabilities derive from the features distributions. Therefore, the recognition process consists of two 
stages: the off–line creation of the features distributions and the probability based classification. 

3.1 Features Distributions 
The finger features are naturally occurring features, thus a Gaussian distribution can model them. Their 
distributions are created by using a test set of 100 images from different people.  

   
(a) (b) (c) 

Figure 7. Features distributions (a) TC Angle, (b) RC Angle, (c) Distance from the centre 
If  is the i-th feature (if [ ]1,  3i∈ ), then its Gaussian distributions for every class  (jc [ ]1,  5j∈ ) are 
given by the relation: 
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class. . The Gaussian distributions of the above features are shown in Fig. 7. As it can be observed from 
the distributions, the five classes are well defined and are well discriminated. 
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3.2 Classification 
The first step of the classification process is the calculation of the probabilities  of a raised finger 
to belong to each one of the five classes. Let 
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This process is repeated for every raised finger.  
Knowing the number of the raised fingers, one can define the possible gestures that can be created. For 
each one of these possible gestures the probability score is calculated, i.e. the sum of the gesture’ s each 
raised finger to belong to each one of the classes. Finally, the gesture is recognized as the one with the 
higher probability score. 

4 Experimental Results 
The proposed hand gesture recognition system, which was implemented in DELPHI, was tested with 
158 test hand images 1580 times. It is trained to recognize up to 26 gestures. The recognition rate, 
under the conditions described above, is 90.45%. Fig. 8 illustrates recognition examples. 
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Figure 8. Gesture recognition examples. 

 

5 Conclusions 
This paper introduces a new technique for hand gesture recognition. It is based on a colour 
segmentation technique for the detection of the hand region and on the use of the Self-Growing and 
Self-Organized Neural Gas network (SGONG) for the approximation of the hand’s topology. The 
identification of the raised fingers, which depends on hand shape characteristics and fingers’ features, 
is invariant of the hand’s slope. Finally, the recognition process is completed by a probability-based 
classification with very high rates of success. 
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Abstract: 
Hidden Markov Models (HMMs) have attracted increasing attention on dynamic gesture 
recognition. Different researchers use various features as the input to HMMs, hence the differences 
between their systems. Most of them make use of simple features which severely limit the system 
ability to deal with complex gestures. However, using complex features will increase the workload 
of the system, and thus slow down its real-time performance. This paper presents a novel method 
where a hand configuration extractor is constructed based on Hierarchical Principal Component 
Analysis (HiPCA), which can extract even very sophisticated hand shapes given a sequence of 
video. The hand shapes together with the trajectory of the hand centroid are then input into the 
Discrete Hidden Markov Models (DHMMs) to recognise dynamic gestures in the video sequence. 
Our experiments show that the method can achieve high performance in terms of both recognition 
rate and speed. 
 
Keywords: Hierarchical PCA, DHMMs, Decision tree. 

 
 
1. Introduction 
 
Sign Language (SL) has been used by the Deaf people from all over the world. Most of the countries have their 
own SL which is different from the others. Unlike the spoken-language, where English is the major language 
in modern society in terms of science and business, there is not a dominant SL, which makes it hard for the 
Deaf from different countries to communicate. The ability to recognise gestures (static/dynamic) using 
computers will help to overcome this problem.  
In recent years HMMs have shown great potential in the area of dynamic gesture recognition comparing to the 
other techniques and have attracted increasing attention. Since Starner and Pentland [1] applied them to the 
recognition of ASL sentences many other researchers have employed them in their systems, such as Vogler 
and Metaxas [2] and Wilson and Bobick [3]. In fact, HMMs are a rather general mathematical model that are 
able to handle the temporal variability of a dynamic process. Different researchers use various features as the 
input, hence the differences between their systems. Many of them only use basic geometric parameters of the 
hands or other simple features. For instance, Starner and Pentland use a simple feature set to describe the hand 
shape which consists of the x and y position of each hand, angle of axis of least interia, and eccentricity of 
bounding ellipse. Lee and Kim [4] took advantage of the hand centroid, divided the 2D plane in the image into 
16 directions, and used the direction of the movement of the hand centre as the feature vector. Naturally, we 
can imagine that simple feature vectors could cause problems because different complex gestures could have 
very similar simple features. In this case, when the size of the vocabulary increases, the coincidence between 
features will become more severe. However, using complex features will increase the workload of the system, 
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and thus slow down the real-time performance. In this paper, we present a hand configuration extractor to deal 
with even very sophisticated hand shapes given a sequence of video, which gives it robustness against hand 
shape changing. 
 Our interest is in developing a hand gesture recognition system with a single camera that is able to run in 
frame rate without the aid of any other special hardware except a normal desktop computer. In the remainder 
of the paper, we describe the problem and our basic idea on how to solve the problem in section 2, then we 
introduce the details in our system in section 3. We evaluate our system using 35 dynamic gestures in section 
4. Finally we summarise. 
 
2. Problem Description 
 
Irish Sign Language (ISL) is composed of two types of gestures: static gestures and dynamic gestures, for 
example, ISL contains 26 gestures corresponding to 26 English alphabet. Of which 23 are static shapes, while 
the rest have to be expressed by dynamic gestures. In this paper, we will concentrate on the task of dynamic 
gesture recognition. Let’s start from a few dynamic gesture examples. Figure 1 gives three examples taken 
from ISL.  
When a tutor teaches these gestures, he would use the following sentences to describe them [5]: 
Gesture 1: Hold the hand in the “T” position at chest level, then move it to the right changing to the “V” 
position. 
Gesture 2: Hold the hand in the “A” position beside left cheek, then move it to the right. 
Gesture 3: Hold the hand in the “L” position, then swing it to the right. 
(“T”, “V”, “A”, and “L” positions are in terms of the static shapes in ISL) 
The above teaching method shows three key issues when describing a dynamic gesture: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The hand configuration is important. For example: “T”, “V”, “A”, or “L” position. 
The global movement of the hand is important. For example: move it to the right, swing it to the right, and so 
on. 
The relative position of the hand against other parts of body is important. For example: chest level, left cheek, 
and so on. 
If we can devise a system that can fully integrate these points together, we should be able to achieve good 
results. Unfortunately, the third point is related to segmentation and recognition of other parts of body, which 
is beyond our current research. Thus, our current system attempts to deal with the first and second point. First, 
the system should be able to recognise the static hand shapes and deal with the change in static shapes during 
the performing of dynamic gestures. Second, the system should also have the ability to recognise the whole 
hand movement. 
We notice it is harder to handle the first point than the second. People describe the hand movement in a rough 
way, such as move your left hand to the right. When designing a dynamic gesture, the designer will not 

 
 

Figure 1: Three dynamic gesture examples from Irish Sign Language. 
Pictures are taken from [5]. 
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describe one gesture as “move your hand to the 63 degree direction up. Be careful, don’t do it along the 70 
degree, it means something else”.  As opposed to this, human hands show much more variety in term of its 
configurations, or shapes. For example, there are about 40 different hand configurations in ISL. Furthermore, 
when these 40 hand configurations are observed from different angles, more appearances will appear. 
 
3. Solution Description  
 
Based on the above thoughts, we designed our ISL recognition system which consists of three major 
components. The first one is a hierarchical decision tree based on the combination of multi-scale theory and 
Principal Component Analysis (PCA). Given a sequence of video containing ISL, this tree can extract the 
intermediate hand shapes fast and reliably. This component deals with the change of local hand shapes. In the 
meanwhile, the second component creates direction codes to record the movement of the hand centroid in the 
video sequence, which represents the hand’s movement as a whole object. This component deals with the hand 
global movement. The third component is a recogniser based on the Discrete Hidden Markov Models 
(DHMMs) to deal with the dynamic characteristic in ISL.  
In our system, the video camera is set up in front of the user. To segment the hand from the rest of the image 
the user wears a coloured glove whose colour is not likely to appear in the background of the streamed video 
images. A standard colour segmentation method is applied. We then compute the positions of the hand 
centroid from the segmented images whose trajectory represents the hand global movement and will be used to 
compute the direction code. At this stage, the area of the hand within the image varies greatly when the hand 
moves with respect to the camera. Thus we scale the segmented hand by area to a 32×32 grey-level centred on 
the centroid. Furthermore, given a 32×32 image I, its image vector f is constructed by concatenating the image 
pixels row by row. f will be use as input to the first component, i.e. the hierarchical decision, to compute the 
local hand shape. Now we describe the three components in details in the following sections. 
 
3.1. Hierarchical Principal Component Analysis 
 
As stated above, the first component constructs a hierarchical decision tree by utilising Hierarchical PCA 
(HiPCA), which combines the PCA with the multi-scale theory to build a hierarchical decision tree. Before we 
discuss its details, we first briefly review the multi-scale theory. 
Given an image I, if we convolve it with a Gaussian kernel, a smoother version of it is obtained. Varying the 
blurring factor σ of the Gaussian kernel, the image I is then represented by a family of smoother versions of I: 
I(σ), where I(0) corresponds to the original image, and as the value of σ increases, more and more details in 
the original image are eroded an no spurious structures will be created, see figure 2. Formally, this procedure 
can be formalised by: 

),,(*),,( 0 σσ yxGIyxI =                        (1) 
where * denotes a convolution, I0 represents the original image, σ is the scale parameter which is always non-negative, 
and G(x,y,σ) stands for a two-dimensional Gaussian kernel defined as: 
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Figure 2. Images under different blurring factors: (1) is the original image, i.e. σ = 0. From (1) 
to (4), the blurring factors are 0, 0.5, 1.0, 1.5 respectively. 
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Hence, Given a set of gestures, if we blur them at different levels, different details will appear so that the same 
training set can be divided into different groups.  
To utilise the above thoughts in practice, we give a detailed description of the algorithm: given a set of training 
image vectors X which is computed from the training video using the method introduced previously, 
1. Every sample in the training set X is convolved with a two-dimensional Gaussian kernel whose blurring 

factor is σ, G(x,y,σ): 
},...,,{ ''

2
'

1 N' fffX =                     (3) 

      where '
if  is given by: 

),,(*' σyxGii ff =   (1<i<N)                              (4) 
where * defines a convolution. This step blurs the differences between the images and reduces their 
separation in the PC space. This reduces the number of eigenvectors needed to describe the data as well.  

2. A PC space of  is computed from 'X :  
1). Computing the covariance matrix of 'X . 
2). A PC space is then computed whose basis are the eigenvectors of the covariance matrix of 'X . 
3). The dimensionality of the PC space is decided by retaining the first few PCs so that at least 95% of 
energy is retained. 

3. The standard k-means algorithm is then applied to the data in the PC space, dividing them into C clusters 
according to what type of tree is wanted, i.e. for a binary tree C=2, for a quad-tree, C=4, and so on. The 
original training set X is then split into C groups: X1, X2,…, XC. 

4. For each of the C clusters, check if the stop criterion is satisfied. If it is, mark it as a leaf, and if all the 
clusters at the current level are leaves, stop the splitting process. Otherwise, for each Xi (1<i<C), repeat step 
1 to 4 with a smaller scale parameter σ’ (σ’<σ). 

The above procedure first blurring differences between images and reducing their separation in feature space 
by convolving all members of the training data with a Gaussian kernel, and then dividing the data in this space 
into clusters in the PC space computed from the convolved data. Then for each cluster, the same procedure is 
repeated but with a smaller σ so that more details in the gestures can be seen. We thus produce a hierarchical 
decision tree where each level of the tree represents a different degree of blurring. The decision tree is based 
on the multi-scale theory and PCA, hence we call the combination Hierarchical PCA (HiPCA). The search 
time is then proportional to the depth of the tree, which makes it possible to search hundreds of gestures with 
very little computational cost. The final output of the process is a decision tree, where each node is a PC space. 
See Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An important parameter during the construction of a decision tree is the termination condition. Currently we 
choose the data variance in the PC space as the termination condition. When the variance of image projections 

 

… 
… …

Feature 

 
Figure 3: Illustration of a decision tree.
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in the PC space reduces to a certain level, 0.5 for example, the node will be marked as a leaf, and no further 
splitting operation will be done on this node. When all the nodes on the current level are leaves, the 
construction is stopped and the learning process is finished.  
Obviously, the tree can separate a set of training images into many small groups according to their similarities. 
In other words, all the images in one leaf should contain similar gestures: not necessarily the same gesture, but 
similar in their two-dimensional images. If the training set is a sequence of videos which contains many 
different dynamic gestures, the leaves in the tree would contain different hand shapes, or configurations, that 
appeared in the videos. No matter how complex the hand configurations are, they will always be “extracted” 
from the training images. Hence, we call the tree a hand configuration extractor. We use gesture 1 (see Figure 
1) as an example. 60 examples with the length varying from 5 frames to 12 frames are acquired continuously. 
We then compute a hierarchical decision tree based on these data. In total seven leaves are extracted out under 
the termination condition that the data variance in each leaf is smaller than 0.5. Figure 4 shows the mean 
images of these leaves. By looking at the seven images in the figure, one can have a basic idea of the dynamic 
procedure of gesture 1: starting with the shape of “T”, then changing into the shape of “V”.  We label the 
leaves in the extractor by integers. Given a sequence of video, we input every image into the tree, which is 
then classified into one of the leaves. The number of the corresponding leaf hence can reflect an even very 
complex hand configuration. The change of the local hand configuration is then represented by a sequence of 
integers, for example, <34, 5, 4, 4, 93, 99, 30>. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2. Direction Code 
 
The hand configuration extractor only deals with the change of the local hand configuration, to record the hand 
global movement, we need to build the direction code.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Mean images of the decision tree made from gesture 1 illustrated in Figure 1. The 

seven images show how one performs the gesture: starting with a shape of a fist in (1) and (2), 
hold hand in “T” position in (3), and change into “V” position. (4) and (5) are the intermediate 

steps of the change. 

Figure 5: Building the direction code.  
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Given a sequence of images, we define the direction code based on every two consecutive images ft and ft+1. 
Assume the co-ordinate of the hand centroid in ft  is <x, y>, and in ft+1 <x’, y’>.  A vector is computed as <x’-x, 
y’-y>. Then we translate this vector into the direction code ID that is one of 8 directions. See Figure 5. 
 
3.3. Discrete Hidden Markov Models 
 
To deal with the dynamic characteristic in ISL, we take advantage of DHMMs, which is the discrete format of 
Hidden Markov Models (HMMs). Many researchers have presented their systems based on HMMs. Most of 
them employed Continuous HMMs (CHMMs) or semi-continuous HMMs [1, 3], and use some geometric 
parameters of the hands as the input features[1, 4]. This brings a couple of disadvantages. On one hand, simple 
features can only separate gestures from a very small vocabulary, as when the size of the vocabulary grows, 
the coincidence between features will become more severe. On the other hand, comparing to DHMMs, 
CHMMs are slower and more difficult to train. 
To achieve both low computational cost and robustness, we have used DHMMs in our system, and have 
developed our own feature vector, which is completely different from the simple features used in work by 
others. 
 
 
 
 
 
 
Figure 6 shows the topology of the DHMM that has been used in our evaluation. It contains seven states 
including the start and end sates. 
The input features we chosen to reflect the hand dynamics consists of two parts. The first part is used to handle 
the complex hand shapes which might happen in the dynamic gestures. It is obtained from the output of the 
hand configuration extractor. The second part is the direction code which reflects the global movement of the 
hand. A dynamic gesture is thus represented by a sequence of two-dimensional feature vectors. For example, 
one gesture might be represented by: < [366, 7], [509, 6], [509, 5], [509, 4], [359, 4], [148, 3], [23,3], [23,2] >. 
While another gesture might be represented by: <[355,1], [509,6], [441, 5], [441, 5], [441, 5]>. 
 
4. Evaluation 
 
Although the system has the potential on very large vocabulary, in the current stage, we only show the 
recognition result of 35 dynamic gesture in ISL. Our experiment was based on DELL OptiPlex GX1 P2 350 
MHz and Creative Webcam 3. The training images were acquired under normal office illumination conditions. 
First, for each of the 35 gestures, we grab 60 samples, i.e. 2100 in total. Using these samples, we train the hand 
configuration extractor. The selection of blurring factors were all determined by trail and error and decreased 
in logarithmic order at different layers of the tree since it reflects the changing structure in the images [6]. The 
equation is given below [6]: 

)/exp(* ckεσ =                                 (5) 
where ε and c are constants. In practice, we use the values ε = 0.01 and c =20. 
We first used the training set to construct the hand configuration extractor and to compute the direction codes. 
Once this had been done, the same set of training samples were fed into it whose output was then combined 
with the direction codes to build a sequence of 2-dimensional feature vectors. We then trained the DHMM 
recogniser with the feature vectors. The recogniser contains 35 individual DHMMs. That is, one for each 
gesture. The training of the DHMM recogniser was finished by using the HTK package.  
For a fair test, we grabbed another similar group of samples, i.e. 60 for each of the 35 gestures, which were 
never used for any portion of the training. For every group, we fed it into the hand configuration extractor and 

 
Figure 6: A sample DHMM topology which has been used in our 
evaluation. 
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computed its direction codes in order to construct the feature vectors. The feature vectors were then sent into 
the DHMM recogniser to find out the possible existing dynamic gestures. The recognition rate is shown in 
Figure 7. No grammar was used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
• Error Analysis 
Errors are mainly caused by three different reasons:  
1. The first type is caused by the visual similarity in hand shapes between the gestures. For example, most of 
the errors in gesture 1 were misclassifed into gesture 27. The two gestures have the same global hand 
movements. The only difference is in the local hand configurations. Gesture 1 holds the hand in the shape of 
“D” while Gesture 2 holds the hand in the shape of “W”, illustrated in Figure 8. From a specific viewpoint, i.e. 
side view, the two shapes are similar. The ambiguity is essentially caused by using a single camera. No good 
solution is available in the current situation. 
 
 
 
 
 
 
 
 
 
2. The second type is caused by the visual similarity in global hand movements between the gestures. For 
example, most of the errors in gesture 7 were misclassified into gesture 34, and vice versa. Both gestures have 
the same change in terms of the hand configurations. The difference is that gesture 7 is moving the hand 
backwards as well as to the right, while gesture 34 only needs to move the hand to the right. This error shows 
the weakness of our system on handling 3D hand movements. Since no depth information was considered 
during the recognition, the backward movement sometimes was treated the same as moving to the right. The 
information on hand area is not much help either, because the backward movement is not very significant 
compared to the distance from the hand to the camera. 3D depth recognition is another open problem for our 
system, and more research has to be done in future. 
3. The third type is caused by the lack of information of the relative position between the hand and other parts 
of body. For example, the error in gesture 33 is a different type: most of the errors were misclassifed into 
gesture 1. Both gestures hold the hand in the same hand shape of “D”, and both of them perform similar hand 
movements: from the upright to down left. The difference between them is that the hand movement is a curve 
and is performed at chest level, while gesture 33 should perform as a straight line at face level. It could be 
improved effectively if the system had the ability to recognise the relative positions of the hand against other 
parts of body. 

 
Figure 7: The bar chart of the evaluation results of 35 dynamic gestures 

 
Figure 8: Two hand shapes in ISL. The left one corresponds to 

“D” and the right one “W”. 
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We also notice the overall recognition rates are high. Although partly it is because of the small vocabulary, this 
preliminary result does show our approach’s potential. 
 
5. Discussion 
 
We presented a novel appearance-based system that is able to recognise dynamic gestures using HiPCA and 
DHMMs. It runs fast even on a cheap machine without help of any other special hardware except a webcam. 
This is because we employed a hierarchical tree to accomplish the search procedure. On the one hand, it 
reduces the search time significantly: from O(n) to O(log2n). As the size of vocabulary gets larger, the 
reduction becomes even more significant. On the other hand, it reduces the dimension of the input feature 
vector while still remain the robustness to handle complex hand shapes. This allows us to use DHMMs instead 
of CHMMs, and hence speed up the recognition.The construction of a bigger vocabulary is now in progress.  
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Abstract

We demonstrate a novel method of generating a mapping function which takes an image of a
neutral face to an image of the same subject depicting an alternative expression. It is proposed that
this mapping function can be used to automatically generate facial expressions from still images of
never seen before faces. This technique draws on the work of Ekman’s [8] Facial Action Coding
System (FACS), which provides an anatomical basis for measuring facial movement. We use the
FACS to generate aFacial Expression Texture Model(FETM), which is used in conjunction with
severalArtificial Neural Networks(ANN) to develop a mapping function. We describe this method
in detail and provide results which demonstrate its effectiveness.
Keywords: Facial expression synthesis, Facial Expression Texture Model (FETM), Facial Action
Coding System (FACS), function approximation

1 Introduction

The central goal of this paper is to describe the development of a mapping function which manipulates
a neutral image of a subject to accurately display a desired expression. This paper builds upon the work
described in [13] where a mapping function was created that manipulated contours depicting facial shape,
this paper extends this idea by manipulating the texture of the face.

The development of this mapping function involves a comprehensive understanding of expression.
Facial expressions have been studied by cognitive psychologists [5, 25], social psychologists [10], neu-
rophysiologists [24], computer scientists [8] and cognitive scientists [6]. The model of facial expression
described in this paper is Ekman’s [10] Facial Action Coding System (FACS). This method of studying
facial expressions and emotions depicted by facial expressions is based on an anatomical analysis of
facial actions. A movement of one or more muscles of the face is known as an action unit (AU). All
expressions can be described using one, or a combination of the AU’s described by Ekman.

We achieve expression synthesis by building a statistical model of the AU in question from a number
of subjects showing that expression in a training set. The change in texture of each face in the training
phase is analysed and used to derive a mapping function, which takes their neutral face to one depicting
the new expression.

To decrease the dimensionality of the mapping the variance in texture of each face in the training set
is analysed usingPrincipal Component Analysis(PCA). This approach can model a large amount of the
variance in the training set by using only a few modes of variation or principal components. This rep-
resentation of expression is known as the expression space. We use the expression space in conjunction
with Feedforward Heteroassociative Memory Networks(FHMN) andRadial Basis Functions(RBF) to
generate a subject independent mapping function, the results of which are presented in this paper.
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2 Measuring expression

Few studies have measured how the face moves as an expression forms [19, 12, 10, 2, 29]. The central
reason for this is the fact that research focused on facial expressions is limited due to the lack of adequate
techniques for measuring the face. Knowledge of the muscles of the face allows us to characterise
exactly what is happening as an expression is emerging. Since everyone’s face is different it is difficult
to characterise an expression any other way. For this reason a thorough understanding of the face is
required prior to devising a scheme for the characterisation and measurement of facial expression.

According to Faigin [11], of the twenty-six muscles that move the face, only eleven are responsible
for facial expressions. Although this description by Faigin provides a good basis for understanding the
anatomy of facial expressions it does not provide an insight as to which muscles work together to create
certain expressions.

TheFacial Action Coding System(FACS) provides a method for studying facial expressions and emo-
tions depicted by facial expressions based on an anatomical analysis of facial actions. A movement of
one or more muscles of the face is known as an action unit (AU). Sometimes it is difficult to distinguish
if one or a set of muscles is accountable for a facial movement. it is for this reason that the term ac-
tion unit is used. All expressions can be described using the individual AU’s described by Ekman or a
combination of the AU’s.

2.1 Facial Expression Texture Model (FETM)

To calculate theFacial Expression Texture Model(FETM) we warp all images to the mean shape. This is
achieved using Delaunay triangulation to segment the mean shape into 214 separate triangles using 122
landmark points. We apply the affine transformation to the pixels within each triangle [8]. Supposex1,
x2 andx3 are three corners of a triangle. Any internal pixel can be written as

x = x1 + β(x2 − x1) + γ(x3 − x1) = αx1 + βx2 + γx3 (1)

whereα = 1 − (β + γ) andα + β + γ = 1. Forx to be inside a triangle,0 ≤ α, β, γ ≤ 1. Under the
affine transformation, this pixel maps to

y = f(x) = αy1 + βy2 + γy3 (2)

Each image is then represented as a vector.

Definition xkj

i Letk be a vector of AU’s wherek = {k0, k1, k2...km−1} andm is the number of AU’s.

Thenxkj

i is a vector representing an image of subjecti showing AUkj .

We use PCA to analyse how the vectors change with respect to each other. Before any significant
analysis can be done on the shape of the faces, the mean must be computed. This is done using the
equation below:

x =
1

Nm

N∑
i=1

m−1∑
j=0

xkj

i (3)

wherex is the mean image vector of every subjecti portraying every AUkj andN are the number of
subjects in the training set . The difference vector is then calculated using

δxkj

i = xkj

i − x (4)

whereδxkj

i is the difference betweenxkj

i and the in the mean vectorx. The covariance matrix is then
calculated. In the experiments in this paper then x n covariance matrix is very large, wheren = 65025.

2
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For this reason the eigenvectors and eigenvalues are calculated from a smallers x s matrix derived from
the data, wheres = N x m. Let D = (δxk0

1 · · · δxkm
N ). The covariance matrix can be represented as

S =
1
s
DDT (5)

Let T be thes x s matrix

T =
1
s
DT D (6)

Let ei be thes eigenvectors ofT with eigenvaluesλi. Thes vectorsDei are all eigenvectors ofS with
eigenvaluesλi. All remaining eigenvectors ofS have zero eigenvalues. Texture parameters forxkj

i can
be extracted and reconstructed using a similar technique used with theFacial Expression Shape Model
(FESM) [13, 16].

3 Function approximation

ANNs have proven to be successful in many practical problems. It has been shown that ANNs can
recognise handwritten characters [21], spoken words [20] and more relevantly human faces [9]. In this
section we address the problem of facial expression synthesis and discuss ANNs that can be used for this
task in conjunction with the FETM.

A Feedforward Heteroassociative Memory Network (FHMN) can be used to compute a mapping from
x toy. This is a one-layer network that stores patterns and is the simplest type of network we consider.The
Neural Network is trained by using then principal components that represent a neutral face as input and
then principal components that represent a face depicting a specific expression as output. In this manner
a mapping function is learned which maps the texture of a neutral face to that of a specific expression.

Radial Basis Function(RBF) networks are a form of ANN that are closely related to what is known
asdistance-weighted regression. The potential of RBF networks has been demonstrated several times
[26, 23]. In a RBF network each hidden unit produces an activation determined by a radial function
(usually a Gaussian) centred at a specific position. A diagram of a RBF network can be seen in Fig 1.
Although Fig 1 suggests there is just one output, multiple output units can also be included. In RBF’s

Figure 1: A radial basis function network

the learned hypothesis is a function of the form

f̂(x) = w0 +
k∑

u=1

wuGu(d(xu, x)) (7)

whereGu(d(xu, x)) is the kernel function. It is common in practice to choose each functionGu(d(xu, x))
to be a Gaussian function centered at the pointxu. An overview of expression synthesis can now be be
shown in Fig 2

3
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Figure 2: Texture Synthesis

4 Experiments and results

To create a FETM it is necessary to use a database that is consistent with the FACS description of an
expression. For this reason we use the Cohn-Kanade AU-Coded Facial Expression Database [7]. The
database includes approximately 2000 image sequences from over 200 subjects. All images used from
the database are AU coded by certified FACS coders. The images used in the experiments described in
this paper have been coded as AU 6 + AU 12 + AU 25. A short description of each is provided.

1. AU 6: Draws the skin from the temple and cheeks towards the eye. The outer band of muscles
around the eye constricts.

2. AU 12: Pulls the corners of the lips back and upward, creating a smile shape to the mouth.

3. AU 25: Pulls the lips apart and exposes the lips and gums.

Forty people and 80 images from the Cohn-Kanade AU-coded facial expression database were used.
Each image was acquired using a Panasonic WV3230 camera connected to a Panasonic S-VHS AG-7500
video recorder. The camera was located directly in front of the subject, and each image was digitized
into 640 by 480 pixel arrays.

The mean shape was segmented using Delaunay triangulation and each image was warped to the mean
shape using a piece-wise affine transformation. The mean image was then calculated (Fig 3). Each image
was then represented as a single vector, subtracted from the mean image and the FETM was generated.
The top 30 principal components of the FETM describe 95.60% of the total variance found in the training
set. Fig 4 illustrates the effect of varying the top four principle components.
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Figure 3: The mean images

Figure 4: Top four principal components

A FHMN was used to generate a mapping from a neutral expression to one depicting the desired
expression. Of the 40 subjects used to create the FETM, 37 subjects were used during the training of
network.

This network failed to return convincing results with the FETM. Fig 5 illustrates the effect of passing
an image through a mapping function created by a FHMN. It should be noted that the change in shape in
Fig 5 is calculated using theFacial Expression Shape Model(FESM) [13, 15, 16].

Figure 5: Expression Synthesis using a FHMN

To improve the mapping further we used a more sophisticatedRadial Basis Function Network(RBFN)
with the FETM. The top 30 principal components of the FETM were used to train the RBF. The training
data consisted of 37 subject and 74 images. Three subjects were excluded from the training of each net-
work to test each network with unseen data. The table below shows the correlation coefficients between
the estimated and real principal components for the FETM in conjunction with a RBF network.

Table1 Experiment1
Subject FETM RBF

1 0.9999
2 1
3 0.6017
4 0.6771
5 0.6208

Average 0.7799
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Subjects one and two were used with 35 other subjects to train the network while subjects three, four
and five are unseen test data. The test data for the FETM has a correlation coefficient oftavg = 0.6645.
Using a similar technique Yangzhou and Xueyin [28] showed how auniform function achieves re-
sults ofaavg = 0.51. This technique improves on this by computing a uniform function that achieves
considerably better results. Fig 6 shows the error of the mapping within the FETM. The histogram on
the left is the error of the mapping for all images in the training set and the histogram on the right shows
the error for all the unseen images. Fig 7 illustrates the photo-realistic synthetic facial expressions of five
different subjects. The first two rows consists of images of subjects that were used during the training of
the RBF network while the next three individuals (rows 3, 4 and 5) were not used during the training of
the network. Column one consists of shape free original images of individuals depicting neutral expres-
sions. Column two consists of shape free original images of individuals depicting AU 6, AU 12 and AU
25 as described by the FACS. Column three consists of synthetic images of individuals portraying AU 6,
AU 12 and AU 25 as calculated by the RBF network with neutral image parameters as input. Columns 4,
5 and 6 are the same as the first three columns respectively except with shape taken into consideration.
The shapes in column 6 are calculated using a FHMN in conjunction with theFacial Expression Shape
Model(FESM) [13, 16].

Figure 6: Error of the mapping

5 Conclusion and future work

This paper showed how a uniform mapping function was created which maps a neutral image of a face
to one depicting a desired facial expression. This was achieved by the development of FETM and using
this model several networks were trained to develop an accurate universal mapping function.

The FETM is based on the FACS, an anatomical analysis of facial actions. The FACS provides us
with a universal method of analyzing facial expression and allowed for the generation of a texture model
that is independent of subject (age, sex, skin colour etc.). The top 30 principal components of the FETM
could describe 95.60% of the total variance found in the training set.

A FHMN was used to develop mapping functions which mapped an image of a neutral face to one
depicting a smile (AU 6, AU 12, AU 25). This network over generalized the mapping and hence much
of the identity of a subject was lost during the calculations. To improve the results a more sophisticated
RBF network was used with the FETM. This networks greatly improved the results with a correlation
coefficient between synthesized and authentic images oftavg = 0.6645 was achieved. The results can be
seen more clearly in Fig 7. The first two rows of this diagram show expression synthesis on data that was
used during the training phase. This diagram shows how the technique is capable of dealing with changes
skin colour. The images in the last three rows are images that were not present during the training phase.
These images illustrate how this technique can generate a synthetic expression of a subject regardless of
sex.
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Figure 7: Original neutral, original non-neutral and synthesized images.

It is planned to use the FETM for expression classification. This could be done using similar neural
networks to the ones detailed in this paper.
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Abstract 
Generally, the iris identification system is composed of three steps: acquiring the eye 
image including iris region, localizing the iris region and feature extraction, and 
decision making by means of matching. Localizing iris region is a very expensive task 
and it takes about 50% of the time of the process. Because of circular shape of the iris, 
circle detection methods are widely used for iris localization. In this paper, we present 
a fast circle detection method that uses the gradient vector pair and certainty factors 
concepts. Using this approach, iris boundary can be found fast, accurate, and robust 
against head tilts. Also a simple idea is used to remove eyelids. Results of the method 
evaluated with CASIA database and show a significant improvement in iris localization 
performance in comparison to the current methods. 
 
Keywords: Biometric, Iris recognition, Iris and pupil localization, Circle detection. 

 
1 Introduction 
 
The traditional methods of human identity verification such as using keys, certificates, passwords, 
etc., can hardly meet the requirements of identity verification and recognition in the modern 
society. Biometric identification provides a convenient and reliable solution to this problem, and 
attracts extensive interests in the industry. Due to its various advantages, iris based identity 
verification is one of the most important biometric methods. Such advantages are persistency of the 
iris pattern over a long period of time, no need for direct contact with the subjects, automatic and 
rapid identification process. Also the reliability of iris-based identification is considerably high.  

Iris identification includes three steps. The first step is acquiring the eye image including the 
iris region. Then the iris is localized and its features are extracted. The last procedure is making 
decision by means of matching. Localizing iris region is an expensive phase. In almost all iris 
recognition methods, it takes about 50% of the time of the process. Usually, the image acquisition 
step captures the iris as part of a larger image that contains other eye components, as well. 
Furthermore, if the eyelids cover parts of the iris, then that portion of the image above the upper 
eyelid and below the lower eyelid should be discarded. Also the contrast between eye components 
can be highly varied depending on the difference between pigmentation of the skin and the iris. 
Thus, iris localization must be insensitive to a wide range of unpredictable problems. 

In this paper, we present a fast circle detection method that can find the iris boundary in an 
acceptable time and also is robust against head tilts. The results show a significant improvement in 
iris localization performance in comparison to current methods. Also a simple idea is used to 
remove eyelids. The paper is organized as follows. Section 2 describes pervious work on iris 
localization, focusing on one of the most famous approaches in detail. Section 3 presents details of 
the Fast Circle Detection (FCD) approach as a general method for finding circles that are brighter 
or darker than their background. How the FCD approach can be improved with certainty factors is 
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explained in section 4. Section 5 explains how the proposed approach can be applied to the iris 
localization problem. Section 6 presents experimental results of the proposed approach with two 
different data sets. Finally, in section 7, we describe the conclusion and our plans for future work. 
 
2 Related Work 

 
Since pupil is black, sclera white and iris gray, the simplest idea for iris localization is gray level 
thresholding of the eye image. This approach has disadvantages because of unpredictable color of 
eyelids and presence of eyelashes. Sometimes distinguishing between iris and skin gray levels is 
very hard. Also, the range of gray level of human eye components varies a lot. So, grayscale 
thresholding, by itself, cannot produce very good results. 

Finding the iris based on its circular shape is another approach for iris localization. Some 
methods use Hough transform to detect a circle in the image or edge map of it [1]. The Circle 
Hough transform (CHT) is one of the best-known algorithms which aims at finding circular shapes 
with given radius within an image. In spite of its popularity, the CHT has some disadvantages. The 
major drawbacks of using CHT are the large amount of storage and computing power required by it 
in real-time applications. Also there were some approaches that have used cooperative modular 
neural networks [2] and cornea reflection [3] to find iris boundary. 

The Wildes et al. [4] system performs contour fitting in two steps. First one is converting the 
image intensity information into a binary edge-map. The second one is voting the edge points to 
instantiate particular contour parameter values. The edge map is recovered via gradient-based edge 
detection. This operation consists of thresholding the magnitude of the image intensity gradient: 
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while G(x,y) is a two-dimensional Gaussian with center  and standard deviation ),( 00 yx σ  that it 
smoothes the image to select the spatial scale of edges under consideration. In order to incorporate 
directional tuning, the image intensity derivatives are weighted to favor certain ranges of 
orientation prior to taking the magnitude. For example, prior to contributing to the fit of the limbic 
boundary contour, the derivatives are weighted to be selective for vertical edges. The voting 
procedure is realized via Hough transforms on parametric definitions of the iris boundary contours. 
In particular, for the circular limbic or pupillary boundaries and a set of recovered edge 
points , a Hough transform is defined as: njyx jj ,...2,1),,( =
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For each edge point ,  ),( jj yx 0),,,,( =ryxyxg CCjj  for every parameter triple 

 that represents a circle through that point. Correspondingly, the parameter triple that 
maximizes H is common to the largest number of edge points and is a reasonable choice to 
represent the contour of interest. In implementation, the maximizing parameter set is computed by 
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building  as an accumulator for  and r. Once populated, the array is scanned 
for the triple that defines its largest value. Contours for the upper and lower eyelids are fit in a 
similar fashion using parameterized parabolic arcs in place of the circle 
parameterization . Just as Daugman system relies on standard techniques for 
iris localization, edge detection followed by a Hough transform is a standard machine vision 
technique for fitting simple contour models to images. Both approaches have proven to be 
successful in the targeted application for localizing the iris. The histogram-based approach to 
model fitting should avoid problems with local minima that the active contour model’s gradient 
descent procedure might experience.  

),,( ryxH CC ,, CC yx

),,,,( ryxyxg CCjj

By operating more directly with the image derivatives, however, the active contour approach 
avoids the inevitable threshold involved in generating a binary edge-map. Further, explicit 
modeling of the eyelids (as done in Wildes system) should allow for better use of available 
information than simply omitting the top and bottom of the image. However, this added precision 
comes with additional computational expense. More generally, both approaches are likely to 
encounter difficulties if required to deal with images that contain broader regions of the 
surrounding face than the immediate eye region. For example, such images are likely to result from 
image acquisition rigs that require less operator participation than those currently in place. Here, 
the additional image “clutter” is likely to drive the current, relatively simple model fitters to poor 
results. Solutions to this type of situation most likely will entail a preliminary coarse eye 
localization procedure to seed iris localization proper. In any case, following successful iris 
localization, the portion of the captured image that corresponds to the iris can be delimited. Figure 
1 shows an example result of iris localization as performed by the Wildes system [4]. 

 

Figure 1. An example of iris localization according to Wildes method [4] 
 
The Daugman approach [4] is the best-known algorithm for iris localization and recognition. This 
algorithm fits the circular contours via gradient ascent on the parameters (xc, yc, r) so as to 
maximize: 

, ,

( , )( )
2c cr x y

I x yG r ds
r rπ

∂
∗

∂ ∫  (7) 

where: 
)2/)(( 22

0

2
1)( σ

σπ
rrerG −−=

 (8) 
 is a radial Gaussian with its center at r0 and standard deviation σ that smoothes the image and * 
denotes convolution. In order to incorporate directional tuning of the image derivative, the arc of 
integration ds is restricted to the left and right quadrants (i.e., near vertical edges) when fitting the 
limbic boundary.  

This arc is considered over a fuller range when fitting the pupillary boundary. However, the 
lower quadrant of the image is still omitted due to the artifact of the specular reflection of the 
illuminant in that region. In implementation, discrete equivalent of the above criterion is used.    
More generally, fitting contours to images via this type of optimization formulation is a standard 
machine vision technique, often referred to as active contour modeling. Figure 2 shows two 
examples of Daugman’s results [5, 6]. 
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The above approaches have some benefits. They all rely on standard machine vision techniques for 
iris localization, and are relatively accurate and simple in user interactive applications. However 
despite these benefits, large amounts of calculation, high order of algorithm complexity, low 
performance for high resolution images and sensitivity to head tilts are some major disadvantages 
of them. 

In the remaining of this paper, we present a fast and accurate approach for localizing the iris 
for recognition purposes. 

 
Figure 2. Examples of Daugman’s method results [5] 

3 Fast Circle Detection Using of Gradient Vector Pairs 
 
In this section, we present a fast circle detection algorithm based on gradient vector pairs. Suppose 
that we have a dark circle on a bright background1, as shown in Figure 3.a. The gradient vectors of 
the circle we search for are in the form shown in Figure 3.b. These vectors’ directions are outward 
the circle, because the circle is darker than its background. Due to the symmetry of circle, for each 
gradient vector there is another gradient vector in its opposite direction. We call these vectors 
vector pair. As shown in Figure 4.a, a specific vector V1 is paired with a vector V2 if the following 
two conditions are satisfied: 
(i.) Angle α, defined as the absolute difference between directions V1 and V2, should be nearly 

180 degrees. 
(ii.) Angle β between the line connecting P2 to P1 (the bases of V2 and V1) and the vector V1 

should be nearly 0 degree2 (This means that 12PP  should be in the same direction as V1).  
The second step of the algorithm is applied to find all vector pairs according to the above 
conditions in the gradient image. The second condition considerably removes noise by filtering 
useless vectors. As Figure 4.b shows, vectors V1 and V2 are not assumed as a vector pair due to 
condition (ii); however they satisfy condition (i). 

 
Figure 3. (a) A black circle in white background, (b) Gradient vectors of (a) 

To increase the speed of pair matching, vectors are sorted according to their directions. So, for each 
specific vector, vectors with opposite direction can be found fast and easily. 

                                                 
1 We can assume this without loss of generality because if the circle is brighter than its background, we can work on the negative image 
or simply reverse the direction of vectors. 
2 Or it should be in the opposite direction of V2, because they are nearly parallel according to condition (i.) 

85



Submission to IMVIP 2004 

In the third step, a candidate circle is considered for each pair of vectors. Such a circle has its 
center at the midpoint of P1 and P2, and its radius is equal to half of the distance between P1 and 
P2. Figure 4.a shows such a candidate circle in dashed lines. In special cases, if the approximate 
radius of the desired circle is known, a third condition can be used to filter out those vector pairs 
whose distances are outside the range of the expected values. This can improve the performance of 
algorithm significantly. 

In the fourth and final step, the desired circles are extracted from the candidate circles 
produced in the previous step. There are two ways to do this. One way is employing a 3-
dimensional accumulator matrix to count the occurrence of quantized circles. Then, the desired 
circles can be found by searching for local maxima in such a space. This is just like the classic 
CHT approach.  

As the candidate circles are known, we use an easier approach to find the desired circles. 
Candidate circles are saved as a set of triples (Cx, Cy, r). These triples are then clustered using 
Euclidian distance between them.  The means of clusters then specify the desired circles. The 
method reduces the space complexity and optimizes the entropy of the saved data. Also, prior 
knowledge about the number of the circles in the image can be used to get better results. The 
clustering method depends on problem attributes. If we know the number of circles to be found 
then we can use top hierarchical clustering to reach such numbers. Otherwise we can use variance 
minimizing methods to find proper clusters. In an application that aims to find one circle, clustering 
is replaced by averaging. 

The FCD is a general circle detection method and can be applied to wide range of 
applications. Also if the definition of Pair Vectors is changed then it can be applied for some other 
shape detection approaches like arc detection, ellipse detection, and sphere detection. Because the 
FCD is presented for general circle detection adjusting parameters of algorithm is critical and 
depends on image features and statistics. The parameters give “adaptation to application” ability to 
the method. By increasing α and β, more pair vectors will be found. This may lead to better result 
(robustness against noise) or worse result (finding more wrong pair vectors). So adjusting these 
parameters is an art and significantly depends on problem features. 

 
Figure 4. (a) Pair vectors and their candidate circle, (b) vectors rejected by condition (ii). 

4 The FCD Improvement Using Certainty Factors (FCD-CF) 
 
According to the original FCD, two vectors make a pair if they satisfy conditions i and ii of 
previous section. In real applications, these conditions are rarely exactly satisfied. So a range of 
acceptable values should be used for α and β. If the deviations of α or β from their ideal value (180 
and 0 degrees) become more than a threshold value, the vector pair is omitted and if both 
parameters place in range, the candidate circle is considered. In contrast with this binary decision, 
two certainty factors can be considered according to mentioned angles: 
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These factors show the rate of satisfaction of i and ii conditions and can be used to control 
the behavior of the algorithm. Parameter σ can be used to adjust the effect of acceptable tolerance 
according to problem attributes. 

Also, symmetry property of circle can be used to improve the performance of the FCD. By 
increasing the noise in the image the probability of matching of two random vectors as a vector pair 
increases. These wrong vector pairs increase error rate. Also, when the number of candidate circles 
is increased the clustering time is growth as well. Without loss of generality assume that the center 
of the candidate circle produced by v1 and v2 is placed at origin. According to figure 5, if a vector 
pair founded then six other points should be placed on the same circle as well. 

To reduce the effect of noise, we can verify the existence of other six points in edge map of 
the image. If number of founded points is less than a specified threshold then the vector pair is 
omitted. In this way, random vectors that are not really placed on a circle are discarded. By 
omitting wrong candidate circles the number of candidate circles is reduced so the clustering step 
can be execute faster. If number of founded edge points is more than specified threshold then a 
candidate circle is considered just like the standard FCD. The number of founded points (n) also 
used to produce another certainty factor for the candidate circle denoted by C8: 
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In implementation, if each of Ca, Cb, or C8 becomes negative we omit the vector pair 
otherwise tree certainty factors used to make a final certainty factor according to the following 
formula that can be used to pair vector filtering and weighted clustering of final circles. 

8kCjCiCCF ++= βα  (12) 
Parameters i, j, and k can be used to form different formulas according to problem features. 

For example for almost hidden circles, k parameter should considered near zero and for finding 
circles in noisy images, i parameter should be decreased. For the best adaptation to special 
problems, parameters, i, j, and k can be learned. 

 
Figure 5. The pair vector and its related 6-points 

5 Fast Iris Localization Using The FCD 
 
This section explains the utilization of the FCD-CF method for iris localization. The method is 
faster than current algorithms and robust against head tilts. The algorithm has three major steps: 
pupil boundary detection, outer iris boundary detection and eyelids removal. 

To increase the algorithm’s performance, some preprocessing is suggested. A Gaussian filter 
can be used to smooth images. As pupil is a dark component, edge points corresponding to low 
gray level points can be considered to find pupil boundary. These preprocessing steps significantly 
reduce the number of the candidate gradient vectors so the algorithm can work faster.  

As mentioned earlier, knowledge about radius can increase the performance of the proposed 
approach method. In iris recognition applications, the ranges of iris and pupil radii are predictable 
based on the image capturing device and the distance. Therefore this knowledge can be used to find 
boundaries more accurately and faster.  
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In the next step, after finding pupil boundary, iris outer boundary should be found. Since the 
location of the center point and range of the radius of iris can be predicted precisely, iris boundary 
can be easily found using the proposed approach. The proposed approach searches for gradient 
vector pairs in a limited area, and candidate circles are checked for having center and radius in 
valid ranges.  

After finding pupil and iris circles, a post processing step can be applied to reach the better 
accuracy rate than before post processing. We use circle detector operator of Daugman in a very 
limited region around found circles.  

To eliminate the eyelids, eyelashes and cornea reflections, other approaches remove the top 
and bottom 90-degree cones of the iris circle because head tilts are not acceptable [5, 7]. 
Contrary to current methods, before finding and removing eyelids we normalize iris using 
Daugman’s approach: 
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where I(x,y) is the raw image, (xp, yp) and (xs, ys)  are centers of found pupil and iris respectively. 
The above formulas spread iris tube and present it as a 360*64 pixels rectangle. Figure 6 shows the 
result of normalization step.  
 

 

Figure 6. Result of spreading of iris and normalization step 

After normalization, eyelids appear as two semi-circles in predictable regions. Such semi-circles 
can be found easily using circle detection methods which adjust to find high contrast circles in 
predictable regions.  

The proposed approach is an extremely fast and size-invariant method, so it is suitable for 
real-time and user interactive applications. The applications which use our approach as iris and 
pupil detection step can work in a user friendly manner. Due to the above advantages, distance of 
subject to image capture device can vary, pupil dilations and head tilts are acceptable and capturing 
a large number of images in time unit is possible. 
 
6 Experimental Results 
 
The proposed method has been tested for iris localization using the CASIA iris image database [8]. 
This database contains iris images of 108 individuals. There are 7 different 320x280 images for 
each subject. Radius of iris and pupil in each image are in the range of 28-75 pixels and 80-150 
pixels respectively. In addition, a database of 100 higher resolution iris images (640x480) has been 
made, and the accuracy and speed of the FCD-CF approach has been tested with both data sets. In 
the second data set, there are some images with tilted subject heads. Radius of iris and pupil in each 
image are about 80 pixels and 250 pixels respectively. 

For the purpose of comparison, the Daugman’s localization algorithm and the original FCD 
have also implemented. All implementations have done in Matlab 6.1 environment using a system 
with 1.8MHz Pentium IV processor and 512MB RAM.  

In pupil detection step, the result of the FCD and the FCD-CF are same because of very 
smooth edge of pupil. So we have only applied the FCD algorithm. In this step, both α and β 
parameters were set to 5 degree, and gradient vectors were calculated using Sobel operator and 
averaged in 5x5 windows and finally threshold by 30%. About 1755 pair vectors were found in 
average. 
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Significantly the FCD-CF has better result to find iris boundary than the FCD method. For iris 
outer boundary detection, both α and β parameters were set to 10 degree and gradient vectors were 
calculated using Sobel operator and averaged in 7x7 windows and finally threshold by 10%. The 
parameters of FCD-CF were adjusted as below:  
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There are about 327 pair vectors found in average in this step.  
After finding circles, circle detector operator of Daugman was applied in 3 pixels around pupil 
found circle and 7 pixels around iris found circle. This post process improved the accuracy of the 
result about 3%. Also ranges of radius of iris and pupil in each image were given to both 
approaches. Upper of given ranges have been set with adding 50% of radius to actual radius, and 
lower bound of given ranges have been set with subtracting 25% of radius from actual radius.  
To remove eyelids, the Canny operator was applied, and the result thresholded to omit edges that 
were below 0.3. Then Daugman’s circle detector was applied in [45 135] and [245 295] columns of 
normalized image.  

There is an important comment that should be mentioned here. Parameters of the proposed 
approach do not limit and weak the generality of approach. It can be observed that the adjusted 
parameters work for two different databases properly. As we mentioned before, parameters can be 
used to reach the best performance of the algorithm. 

According to our experiments, Daugman’s approach is able to localize about 83% of images. 
Our approach is able to localize more than 91% of CASIA images. Table 1 shows the average 
execution times of the proposed approach and Daugman localization algorithms.  
From Table 1, for CASIA images, our approach is about seven times faster than Daugman’s 
approach on the average. For higher resolution images, our approach has run near 14 times faster 
than Daugman’s algorithm on the average. 
 

Table 1. Average of execution times (in seconds) 
 Proposed Approach Daugman’s Approach 
CASIA (320x280) 0.84 6.37 
Our dataset (640x480) 2.20 28.78 

 
Figure 7 shows the response time histogram of both approaches. The standard deviation factor of 
the proposed approach and Daugman’s approach have been calculated as 0.08 and 1.51 
respectively. According to this figure, we find out that the response time of the proposed method is 
more deterministic and predictable which is a very important factor for real-time and human-
interaction systems. According to our experiments, pupil localization takes 30% of computing time, 
iris outer boundary detection takes about 55% of computing time and image preparation and 
eyelids removal take about 15% of computing time. 
 

Table 2. The results of accuracy tests of the proposed approach 
 Centers 

Pupil/Iris 
Radii 

Pupil/Iris 
Overlap 

Pupil/Iris 
CASIA dataset 0.03/0.05 0.04/0.07 0.98/0.94 

Our dataset 0.01/0.02 0.01/0.04 0.99/0.96 
 
Another test was done to estimate the accuracy of the proposed approach. One hundred different 
images were selected and the exact iris and pupil circle boundaries on them were determined 
manually by a human operator. The error rate was calculated in three ways: Distance of the 
estimated centers from actual centers, difference between estimated radius and actual radius and 
percentage of overlap of circle surfaces. Table 2 shows the final result of accuracy tests. Distance 
between centers and difference of the radii are normalized by the actual radius.  

According to these results, our approach can find the pupil boundary significantly accurate 
and reliable. Also iris outer boundary detection shows very good performance. In almost all 
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experiments more than 97% of the visible part of iris is detected which is proper for recognition or 
other related applications. It should be mentioned that if the error rate of localization step passes 
about 10% the overall recognition system will fail. So the accuracy of Daugman’s approach (and 
also other methods) is very close to the accuracy of our method. So, we could reach a seven times 
faster speed without losing the accuracy rate. 

Some other localization methods can be robust against head tilts. For example, the CHT is 
rotation invariant and can find iris boundaries in any direction. Since other methods do not use 
edge directions, making them robust against head tilts (without losing accuracy) is expensive 
(heavy calculations and heuristics) and cannot be used in real-time applications.  

 
Figure 7. Histogram of response time for (a) propose method and (b) Daugman’s method 

Another evaluation is done to compare the resistance of the proposed algorithm against noise. The 
density of the pepper and salt noise was increased from 0 to 80 percent for each input image, and 
error rates (number of wrong localized images) of the proposed and Daugman’s approaches were 
calculated. The results of this experiment shows that the proposed approach resists against noise 
until 30% noise rate but the Daugman’s approach just resists until 17% noise rate. After the 
mentioned threshold, the error rate increases exponentially for each approach but with the lowest 
slope for the proposed approach. 

 
Figure 8. Resistance against pepper-salt noise 

The Daugman’s approach is totally failed after 41% noise but the proposed method resists until 
68%. The surprising result is obtained according to nature of the FCD. When the noise increases it 
causes increasing of the unreal edges. Filtering nature of the FCD resists against this change but 
Daugman’s approach count these unreal edges in its circle detector operator. Figure 8 draws the 
error rates versus noise density for each approach. 

Iris localization using gradient vector pair approach has some drawbacks too. If more than 
half of iris is invisible, finding vector pairs will be impossible, so the FCD method fails in this case. 
Our approach fails for less than 9% of images of the CASIA database due to this reason. 
Fortunately, in such cases, the iris information is often not useful and the recognition system can 

90



Submission to IMVIP 2004 

discard the image and try to capture another one. Figure 9 shows two output results of our 
approach. 
 
 
7 Conclusions 
 
In this paper, we presented a fast, size-invariant, application adaptable and accurate algorithm to 
find iris boundaries for recognition purposes. The algorithm consists of pupil boundary detection, 
iris outer boundary detection, eyelid removal, and boundary fitting. The method is based on using 
the symmetry of the gradient vector pairs on pupil and iris circle boundaries. The algorithm was 
implemented and its performance was compared with Daugman’s localization algorithm using 
CASIA iris image database and 100 other high resolution images.  

The experimental results show that the proposed approach is more than seven times faster 
than Daugman’s for CASIA database and nearly 14 times faster for higher resolution images. As 
mentioned, iris localization takes about 50% of time and calculations in iris recognition 
applications, so using presented method can speed up the overall process significantly. Also a test 
on accuracy of our approach shows about 99% accuracy for pupil localization and about 97% for 
iris outer boundary detection. The accuracy rate is fitting for all current recognition approaches.  

Persistency against noise is another advantage of our approach compare to the current 
methods. According to our experiments, if the input image is affected by 30% pepper and salt 
noise, there is no change on accuracy of proposed method. If the pepper and salt noise reaches near 
50%, the error rate of the proposed method will be less than 25%. 

 
Figure 9. Output result of the proposed approach 
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Abstract 
We formulate the human face detection task upon upright vertical frontal views faces 
in complex scenes  as a wavelet-based problem and develop a novel approach using the 
extrema density aims to determine the image position of a single face. At first, face-of-
interest (FOI) region is located and framed with an overlaid bounding box by finding 
facial edges using the inter-orientation wavelet subbands and the anthropometric 
measure. Then, a refining step is carried out to reposition and resize the bounding box 
for FOI to further improve the localization accuracy. Comparisons with two existing 
state-of-the-art face detection works and an on-line face demo system are presented, 
showing that our system has a comparable performance in terms of face localization 
rate and quality. 
 
Keywords: Extrema density, face-of-interest (FOI) region, face localization. 

 
 
1 Introduction 
 
Face localization, which is a simplified detection problem and aims to determine the image position and size 
of a single face, is a fundamental stage in the process of face recognition. The accuracy of the detected face 
coordinate has a heavy influence on the recognition performance since most techniques (e.g. eigenfaces [1]) 
assume the face image normalized in terms of scale and rotation, their performance depends heavily upon the 
accuracy of the detected face position within the image. This makes face detection a crucial step in the 
process of face recognition. Recently, a sizable body of research in the area of face detection has been 
amassed. An excellent survey of the relevant literature can be found in [2]. A major technical challenge that 
needs to be addressed in various directions is the unsatisfactory performance of face detectors in rather 
unconstrained environments. 

Recent works have proposed the use of wavelet functions as activation functions and have shown their 
powers in face detection problems [3]. Although wavelet decompositions can map the useful information 
content into a lower dimensional feature space, however, with the selected basis what feature is an efficient 
representation and how to develop a computationally efficient face localizing algorithm still deserve further 
study. In the current paper, based on dyadic discrete wavelet transforms (DWT) [4] we propose an efficient 
localization method to extract 2-D wavelet extrema density as feature from the three octave-width subbands 
decomposed. Then, a gradient-based boundary search algorithm is in turn used to find a coarse boundary of 
FOI. Finally, a refining step is carried out to readjust the previous located bounding box by using the head 
contour detection. The remainder of this paper is organized as follows. In Section 2, the characterization and 
the extraction of wavelet extrema density for facial edge detection is given. Section 3 describes the proposed 
face localization and head contour refining method. Experimental results and comparisons of the proposed 
scheme with the existing works are provided in Section 4. Conclusions are drawn in Section 5. 
 
2 Facial Feature Extraction 
 
Texture measure, which offers a means of detecting objects in background clutter that has similar spectral 
characteristics, is the visual cue due to the difference between human face and background [5]. To describe 
facial texture, one obvious feature is roughness. Since a face may exhibit different roughness over the 
decomposed wavelet subbands, it is proper in reality to detect face region by investigating the utility of 
feature derived from wavelet transform extrema. Roughness corresponds to the perception that our sense of 
touch will feel with an object and it can be characterized in two-dimensional scans by depth (wavelet 
coefficient strength) and width (separation between wavelet extrema). This interpretation prompted us to 
estimate the selected extrema as a particular signature of roughness, being very useful as a distinctive feature 
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of face texture measures. The properties of these extrema were studied in [6], and they turn out to be among 
the most meaningful features for signal characterization. The extremum at a point f(x, y) of the horizontal 
channel component from its wavelet transform,Wf , is defined as: 
 

Maxr : )) 1,- ( ), 1,((  ) ,( yxWfyxWfmaxyxWf +> ,                                     (1) 
  Minr : )). 1,- ( ), 1,((  ) ,( yxWfyxWfminyxWf +<                                       (2) 

 
In addition, similar definitions for the extrema in the vertical channel, Maxc  and Minc , are also defined. A 
pixel is a local extremum if it is both a local row extremum and a local column extremum. The operator of 
wavelet extrema for a 2-D image signal f is then defined as 
 

}.  ,            
,  ,  {

WfMinWfMinWfMaxWfMin
WfMinWfMaxWfMaxWfMax
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∩∩
∩∩=                                     (3) 

 
This means Ef consists of coordinates of the wavelet extrema. Roughness of an image is not an absolute 
measure, but depends on the subbands at which the image processed. The LH wavelet subband makes a 
horizontal textured surface seem more remarkable, while the HL wavelet subband brings forward the rough 
structure of the surface at the vertical direction. To separate face-of-interest (FOI) region from the 
background, the extrema density fE d  for an image of size M rows and N columns with extrema number 
#Ef is formulated as: 
 

)( /# )( NMEfΓfE d ×= ,                                                         (4) 

where Γ  is the threshold value for the wavelet coefficient, which can be quite critical in that it will affect the 
performance of successive steps such as face boundary localization. With the selected density range, which is 
usually obtained from the face databases by off-line learning, the threshold value Γ  for wavelet coefficients 
is gradually increased in the meantime the thresholding step is repeated until a suitable facial texture 
representation for the task is reached. Extrema densities with various ranges, 0.1~0.06, 0.06~0.03, 
0.03~0.015, 0.015~0.007, 0.007~0.0025, and 0.0025~0.001, are predetermined to investigate the exploitation 
of image attribute information such as edge. Using the 4-tap Daubechies [7] wavelet filter with two vanishing 
moments, an example of an original 384 × 286 face image as displayed in Fig. 1(a) being decomposed into 
four subbands for one level  with extrema density 0.03~0.015 is shown in Fig. 1(b). As an illustration, 
consider Fig. 1(b), which is the result of applying a threshold value Γ = 3 to the subimage. We see that the 
subimages have been pleasingly sharpened by bringing out more of the facial texture details and the fine 
grain noise-like coefficients are less pronounced. These are much more acceptable results when compared to 
the rest of the other extrema densities, thus helping to localize the face region of interest. It is noted that the 
larger the extrema number the more information were the texture features found. However, the less accurate 
the boundaries between face and background become. This leads to a trade off between choosing a good 
facial region segmentation or good boundary between face and background.  

 
3 Face Localization Algorithms 

To develop an efficient localization method from an arbitrary uncontrived image, the face localization 
algorithm is proposed to precede expensive computations amidst three steps as followings: 

Step 1: Wavelet extrema extraction at the LH, HL, and HH subbands, respectively. 

Step 2: A thresholding process to adjust the extrema density for locating FOI by means of edge detection and 
anthropometric measure. 

Step 3: The head contour detection is carried out to refine the previous located bounding box by comparing 
the detected FOI positions. 

3.1  Locating Face-of-Interest (FOI) Region 
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As depicted in Fig. 1, we start by decomposing an image using one-level DWT and then extract the edge 
candidates for locating FOI. This could be very useful for the detection of facial directional textures, such as 
face boundary, since the separable sampling in DWT provides rectangular divisions of spectrum, with 
sensitivity to horizontal, vertical, and diagonal edges. Then, wavelet extrema density extractions are 
performed with the three inter-orientation decomposed subbnads, respectively, i.e. HL, LH, and HH. 
Consequently, the candidate edge segment is detected based on a measure of extrema discontinuity at a 
region, which is formed from the extrema number with values that exceed a preset threshold. Using the 
subband HL with size M/2 × N/2 and beginning from the two sides of the subimage, an approach detecting 
the vertical transition in extrema number associated with κ  pixels region is given by  
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where 0 ≤ x + α < N/4 – 1 when starting from the left side of the image, N/4 ≤ x + α < N/2-1 when starting 
from the right side of the image, κ = 4 and ς = 3. When the condition of the equation (5) occurs, the 
associated x coordinates are stored as candidate edge segments, and the procedure is performed before the 
search range is exceeded. Although attention thus far has been limited to a vertical edge, a similar task as 
well takes place at the LH subband to produce a candidate top edge of the horizontal orientation. In what 
follows, based on the aspect ratio of the face shape, which has been set to be [10/7, 6/4] in this work, a 
localization step is performed with the obtained candidate edges to search for the desired top and lateral 
boundaries of the FOI. With the located edges, thereafter, one can delimit the bottom edge of the FOI region. 

3.2  Refining FOI by Using Head Contour Detection 

As displayed in two examples of Fig. 2(a), due to different facial expressions, lighting conditions, and 
hairstyle, etc. the localization stage may raise a problem of imprecise localization of face, which can 
ultimately imply an erroneous face detection result. It would be unrealistic to hope for our framework that the 
bounding box for the previous FOI region has a pixel degree of precision. In order to tackle this problem, we 
present a refining approach to determine the up right and left contours of the head object, which are 
considered to be the most discriminative signature from the complex backgrounds. Constrained under around 
one and a third times the earlier located FOI region, by using the equation (5) for the three subbands a zig-
zag scan procedure starting from the upper left and right corners downward diagonally, respectively. The 
head corner is determined by combining all the candidate segments among the HL, LH, and HH subbands 
because the desired signature is probably present at any one. The connected facial edge candidate with equal 
and above length of extrema number is then identified and located while the candidate segment of the head 
corner is detected. The final FOI location will be accordingly modified as illustrated in bold lines of Fig. 2(b), 
which are composed of the head corner and the facial edge. It is noted the FOI refining output will keep the 
same as the earlier framing result if there is no candidate segment available at the extreme case.   
 
4 Face Databases and Experimental Results 
 
In this section, we present the results calculated on BioID [8] and Visionics [9] databases, respectively. The 
first test set, a face database of mixed head inclination, gaze direction, hairstyle, gender, race, and age 
consisting of 1521 images (384 × 288 pixels, gray level) of 23 different persons, which has been recorded 
during different sessions and places at the BioID company headquarters. During the recording special 
emphasis has been laid on real world conditions. No restrictions on wear (clothes, glasses, etc), make-up, 
hairstyle, etc., were imposed to the participants. The second one is a commercial database, which comes from 
one of the leading pattern recognition systems available on the market. The database contains 120 color 
images with various sizes, each one showing the face of one out of 120 different test persons. For the purpose 
of determining system performance it is important to establish a clear definition of output classification. 
Successful face localization was defined as having at least FOI including both eyes, nose, and mouth located 
correctly. Localization rate is hereby defined as the ratio between the number of faces successfully localized 
and the number faces determined by a human. Some examples of face detection are shown in Figs. 3 and 4. 
Fig. 3 shows the examples of our results including correct and erroneous framing for the BioID test set, 
respectively, while Fig. 4 shows the examples of Visionics test set. Experimental results have demonstrated 
the effectiveness of the proposed method with localization rate 97.9% (1489/1521). However, it is also 
observed that the bounding rectangle (frame) for FOI may be larger than desired (background is not added to 
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the face) or improperly located when the faces are incomplete, with curl hairstyle, too dark, or too light, 
which complicate the face localization task considerably. The same is true for the framing when the head 
rotated excessively. In comparison to the results of the existing works, we would like to specially mention the 
results of [10] with 92.8% and [11] with 94.5% experimented on the same BioID data set as ours. It should 
be noted that it is hard to make a fair and an effective performance evaluation due to the lack of a common 
performance measurement for the face detection algorithm. 

To further compare the performance of the proposed method with the currently available on-line face 
detector developed by Garcia [3] and Delakis at University of Crete, two data sets containing 100 random 
sample images taken from the BioID database and Visionics respectively are adopted to test the interactive 
demo system, which is located at http://aias.csd.uch.gr:8999/cff/. For the former dataset, our scheme 
performs slightly better than the Crete face detector with a successful detection rate of 97% while the quality 
of framing is also considered. No false dismissal is obtained using our scheme whereas three false dismissals 
(3%), for which the example images given no face found can be referred to Fig. 3, are obtained using the 
Crete face detector. It is interested to note that the last two of three false dismissals as shown in Fig. 3 from 
the Crete face detector are as well as failed to detect in Ref. [11], which implies that there are similar failure 
modes between them. Nevertheless, we have a completely different failure mode in the sense that the 
abovementioned images can be detected by our algorithm. Considering both our method and the Crete face 
detector, over-framed FOI cannot be totally avoided. In terms of speed, our system is faster, operating at an 
average processing time 1.6 ~ 2.1 sec per BioID image on a 1.0 GHz Pentium III PC. On the other hand, the 
Crete face detector processed at an average of 2.0 ~ 4.7 second per image on the same test data but on a 
different platform. 

As presented in Fig. 4 for the Visionics data set, on the other hand, our algorithm detect 109 of the 112 
faces which means a successful rate of 97.3%, whereas the Crete detector detects 98 faces of the 100 faces, 
leading to a successful detection rate of 98%. We observed that our detector failed mainly for faces of too 
dark. The main reason is that due to the dim lighting, which hides a significant part of the face, the number of 
extrema number in the LH subband is too few to detect the horizontal face boundary. 
 
5 Conclusions 
 
The presented framework led to fine face localization results, which did not involve sophisticated methods, is 
suitable for the application such as video telephony requiring the low-delay and limited computing power. A 
general face detection scheme may need to segment out the accurate face contours, however, thereby 
increasing the implementation cost.  
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Fig. 1 (a) Original BioID image with located bounding box for FOI. (b) One-level decomposed wavelet 
subimages with extrema density 0.03~0.015 and detected facial edges. 
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(b) 
 

Fig. 2 (a) BioID examples with improper localization and refined results. (b) The refining processes of (a) 
improved by using the head contour detection. 
 
 
 
 

     
 
Fig. 3 Examples of correct and erroneous localization on BioID test images. 
 
 
 
 

             
 
 
Fig. 4 Examples of correct and erroneous localization on Visionics test images. 
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VFHQH LV LQLWLDOO\ RXWOLQHG� �� WKH LQWHUPHGLDWH OHYHO� ZKHUH VWUXFWXUHV RI VHSDUDWH� QRQ�RYHUODSSLQJ LPDJH UHJLRQV

XVXDOO\ DVVRFLDWHG ZLWK LQGLYLGXDO VFHQH REMHFWV DUH GHOLQHDWHG� DQG �� WKH ORZ OHYHO GHVFULSWLRQV� ZKHUH ORFDO

LPDJH VWUXFWXUHV REVHUYHG LQ D OLPLWHG DQG UHVWULFWHG ILHOG RI YLHZ DUH UHVROYHG� $VVXPLQJ WKDW WKH GHVFULSWLRQV

DUH FUHDWHG ZLWK D V\QWDFWLFDOO\ GHILQHG DQG IL[HG ODQJXDJH� WKH WRWDO OHQJWK RI WKH GHVFULSWRUV PD\ EH FRQVLGHUHG

DV D TXDQWLWDWLYH PHDVXUH RI WKH LPDJH FRQWDLQHG LQIRUPDWLRQ�
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.ROPRJRURY¶V &RPSOH[LW\ LV D PDWKHPDWLFDO WKHRU\ GHYLVHG WR H[SORUH WKH QRWLRQ RI UDQGRPQHVV� ,WV EDVLF

FRQFHSW LV WKDW LQIRUPDWLRQ FRQWDLQHG LQ D PHVVDJH �REYLRXVO\� DQ LPDJH FDQ EH FRQVLGHUHG DV D PHVVDJH� FDQ EH

TXDQWLWDWLYHO\ H[SUHVVHG E\ WKH OHQJWK RI D SURJUDP� WKDW �ZKHQ H[HFXWHG� IDLWKIXOO\ UHSURGXFHV WKH RULJLQDO

PHVVDJH� >�@� 6XFK D SURJUDP LV FDOOHG WKH PHVVDJH GHVFULSWLRQ�

9DULRXV GHVFULSWLRQ ODQJXDJHV FDQ EH GHYLVHG DQG SXW WR XVH IRU WKH SXUSRVH RI GHVFULSWLRQ FUHDWLRQ� 7KHUHIRUH�

LW LV RQO\ QDWXUDO WR DQWLFLSDWH WKDW D VSHFLILF ODQJXDJH ZLOO LQIOXHQFH WKH OHQJWK RI WKH GHVFULSWLRQ DQG LWV

DFFXUDF\� 2QH RI WKH LPSRUWDQW ILQGLQJV SURYLGHG E\ .ROPRJRURY¶V FRPSOH[LW\ WKHRU\ LV WKH QRWLRQ RI ODQJXDJH

LQYDULDQFH� >�@� 7KDW LV� WKH GHVFULSWLRQ ODQJXDJH� RI FRXUVH� DIIHFWV WKH OHQJWK RI REMHFW¶V GHVFULSWLRQ� EXW WKLV

LQIOXHQFH FDQ EH WDNHQ LQWR DFFRXQW E\ D ODQJXDJH GHSHQGHQW FRQVWDQW DGGHG WR WKH ERG\ RI D ODQJXDJH

LQGHSHQGHQW GHVFULSWLRQ� ZKLFK DFWXDOO\ LV WKH .ROPRJRURY¶V FRPSOH[LW\ RI DQ REMHFW� 7KH ODWWHU GHWHUPLQHV WKH

DEVROXWH DPRXQW RI LQIRUPDWLRQ LQ DQ LQGLYLGXDO REMHFW� DQG WKXV FDQ EH FDOOHG WKH DEVROXWH .ROPRJRURY¶V

FRPSOH[LW\� >�@� 7KH SUREOHP� KRZHYHU� LV WKDW WKLV DEVROXWH .ROPRJRURY¶V FRPSOH[LW\ LV �WKHRUHWLFDOO\�

XQFRQVWUDLQHG DQG� WKXV� LW LV SUDFWLFDOO\ XQFRPSXWDEOH�

7KLV WRSLF ZRXOG VRXQG OHVV GLVFRXUDJLQJ LI ZH ZLOO JLYH XS LQ DGYDQFH WKH QHFHVVLW\ RI D SHUIHFW DQG DFFXUDWH

LQIRUPDWLRQ GHVFULSWLRQ� LI ZH ZRXOG EH SOHDVHG ZLWK LWV OHVV FRPSOHWH DQG SUHFLVH YHUVLRQ� 3UDFWLFDOO\ WKDW PHDQV

WKDW VRPH SDUW RI LPDJH LQIRUPDWLRQ ZRXOG UHPDLQ XQGLVFRYHUHG DQG XQGHVFULEHG >�@� %XW HVVHQWLDOO\� ZH VHOGRP

XVH DOO WKH DYDLODEOH LQIRUPDWLRQ� )DU PRUH LPSRUWDQW IRU XV LV WKH LQVLJKW RI .ROPRJRURY FRPSOH[LW\ WKHRU\ WKDW

LQ DQ\ FDVH HIIHFWLYH REMHFW GHVFULSWLRQ PXVW FRPPHQFH ZLWK WKH VLPSOHVW REMHFW VWUXFWXUH GHOLQHDWLRQ� $Q

LPSRUWDQW HTXLYDOHQFH EHWZHHQ WKH VKRUWHVW REMHFW GHVFULSWLRQ DQG WKH VLPSOHVW REMHFW VWUXFWXUH LV HVWDEOLVKHG�

>�@� 7KH EHVW ZD\ WR DFKLHYH DQ REMHFW VLPSOLILFDWLRQ LV D VRPH VRUW RI REMHFW FRPSUHVVLRQ� ZKHQ WKH H[LVWLQJ

REMHFW UHJXODULWLHV DUH VLPSO\ VTXHH]HG RXW IURP LW� $ KLHUDUFKLFDO DQG UHFXUVLYH VWUDWHJ\ IRU D GHVFULSWLRQ

FUHDWLRQ LV WKXV HPHUJHG� %HJLQQLQJ ZLWK WKH VLPSOLILHG DQG FRXUVH REMHFW VWUXFWXUH� WKH GHVFULSWLRQ LV

VXEVHTXHQWO\ DXJPHQWHG ZLWK PRUH DQG PRUH ILQH GHWDLOV XQYHLOHG DW GLIIHUHQW KLHUDUFKLFDO OHYHOV RI REMHFW

DQDO\VLV DQG GHVFULSWLRQ�
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7UDGLWLRQDO DSSURDFKHV� ZKLFK GHDO ZLWK LQIRUPDWLRQ FRQWHQW GHVFULSWLRQV �OLNH WKH UHFHQWO\ LQWURGXFHG 03(*��

VWDQGDUG�� SURFHHG ZLWK LQIRUPDWLRQ IHDWXUHV JDWKHULQJ �IRU WKH SXUSRVH RI LQIRUPDWLRQ GHVFULSWRUV FUHDWLRQ� LQ D

TXLWH GLIIHUHQW PDQQHU� 7KH ZLGHVSUHDG ERWWRP�XS LQIRUPDWLRQ JDWKHULQJ DSSURDFK LV FRQFHUQHG� ILUVW RI DOO� ZLWK

SURFHVVLQJ RI ORZ�OHYHO HOHPHQWDU\ LQIRUPDWLRQ SLHFHV� ZKLFK DUH LQLWLDOO\ VHDUFKHG DQG UHWULHYHG RYHU WKH HQWLUH

LPDJH VSDFH� /DWHU WKH\ DUH JURXSHG DQG DJJUHJDWHG LQWR ODUJHU DJJORPHUDWLRQV� ZKLFK DUH IHG WR WKH KLJKHU

V\VWHP OHYHOV IRU IDUWKHU �KLJKHU�OHYHO� SURFHVVLQJ� 7R DFFRPPRGDWH IRU H[WHUQDO �XVHU RU V\VWHP� UHTXLUHPHQWV�

WKDW LV� WR LQFRUSRUDWH WKH UXOHV DQG SULQFLSOHV E\ ZKLFK GLVRUGHUHG LQIRUPDWLRQ SLHFHV DUH FRPELQHG DQG

DJJUHJDWHG� D VXSHUYLVHG WRS�GRZQ FRQWURO IORZ LV JHQHUDOO\ DVVXPHG� ,WV DLP LV WR PHGLDWH WKH ERWWRP�XS

LQIRUPDWLRQ JDWKHULQJ� ,W LV JHQHUDOO\ EHOLHYHG WKDW WKLV VXSHUYLVHG LQWHUYHQWLRQ RI D WRS�GRZQ FRQVFLRXV FRQWURO

OHDGV WR D PRUH VXLWDEOH DQG PRUH WDVN�ILWWLQJ ORZ�OHYHO LQIRUPDWLRQ IHDWXUHV DFTXLVLWLRQ� >�@�

7KH URRWV RI VXFK SUHOLPLQDU\ ERWWRP�XS SURFHVVLQJ FDQ EH WUDFHG EDFN WR 7UHLVPDQ¶V )HDWXUH ,QWHJUDWLQJ

7KHRU\ >�@ RU %LHGHUPDQ¶V 5HFRJQLWLRQ�E\�FRPSRQHQWV WKHRU\ >�@� 5HO\LQJ RQ WKH HYLGHQFH IURP KXPDQ

DWWHQWLRQDO YLVLRQ VWXGLHV� WKH\ ZHUH WKH ILUVW WR SURSRVH WKH ERWWRP�XS PDQQHU RI SULPDU\ LQIRUPDWLRQ JDWKHULQJ�

+RZHYHU� WKH ODWHVW HYLGHQFH SXW WKH FRUUHFWQHVV RI WKH WUDGLWLRQDO DSSURDFK LQ GRXEWV� 7R SURSHUO\ XQGHUVWDQG

WKH SRLQW� VRPH ZRUGV PXVW EH VSHQW RQ WKH SHFXOLDULWLHV RI KXPDQ YLVLRQ� +XPDQ H\H¶V UHWLQD KDV DQ RGG

VWUXFWXUH ± RQO\ D VPDOO IUDFWLRQ RI LWV YLHZ ILHOG �DSSUR[LPDWHO\ �
�
RXW RI WKH HQWLUH ILHOG RI ���

�
� >��@� LV GHQVHO\

SRSXODWHG ZLWK SKRWRUHFHSWRUV� -XVW WKLV VPDOO IUDJPHQW RI WKH UHWLQD �WKH VR�FDOOHG IRYHD� LV UHVSRQVLEOH IRU RXU

DELOLW\ WR VHH D VKDUS DQG FOHDU SLFWXUH RI WKH VXUURXQGLQJ ZRUOG� 7KH UHVW RI WKH YLHZ ILHOG LV D IDVW GHVFHQGLQJ �LQ

VSDWLDO GHQVLW\� SODFHPHQW RI SKRWRUHFHSWRUV �IURP WKH IRYHD RXWZDUG WR WKH H\H¶V SHULSKHU\�� ZKLFK SURYLGHV WKH

EUDLQ ZLWK FUXGH DQG IX]]\ UHSUHVHQWDWLRQ RI WKH REVHUYHG VFHQH� 7R FRPSHQVDWH IRU WKH ODFN RI UHVROXWLRQ RYHU

WKH HQWLUH YLVXDO ILHOG� FRQWLQXRXV H\H PRYHPHQWV �DOVR NQRZQ DV H\H VDFFDGHV� DUH SHUIRUPHG� VHTXHQWLDOO\

SODFLQJ WKH KLJK�UHVROXWLRQ IRYHD RYHU YDULRXV �LQIRUPDWLRQ ULFK� VFHQH ORFDWLRQV�

$FFRUGLQJ WR DWWHQWLRQDO YLVLRQ WKHRULHV WKH GHFLVLRQ WR PDNH D VDFFDGH DQG WR IL[ WKH IRYHD RYHU D QHZ LPDJH

ORFDWLRQ SUHFHGHV KLJK�UHVROXWLRQ �ORZ�OHYHO� LPDJH LQIRUPDWLRQ JDWKHULQJ� DQG KHQFH� LW FDQ EH \LHOGHG RQO\ E\

WKH FRDUVH DQG SRRU LQIRUPDWLRQ GHOLYHUHG E\ WKH SHULSKHUDO YLVLRQ� 7KH IORZ RI QHZ HYLGHQFH FRQYLQFLQJO\

VXSSRUWV WKLV VXJJHVWLRQ� YLVXDO UHFRJQLWLRQ�FDWHJRUL]DWLRQ WDVNV XVH ³H[SUHVV´� EXW FRPSDUDWLYHO\ LPSUHFLVH DQG

FRDUVH�VFDOH UHSUHVHQWDWLRQV� EHIRUH WKH ILQH�VFDOH UHSUHVHQWDWLRQV DUH DFTXLUHG >��@� WKH ILUVW VLJQDOV UHDFKLQJ WKH
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KLJKHVW SURFHVVLQJ OHYHOV DUH IURP WKH H\H¶V SHULSKHU\� QRW IURP WKH IRYHD >��@� 1RW OHVV VXUSULVLQJ LV WKH

HYLGHQFH WKDW WUDGLWLRQDO DVVXPSWLRQV DERXW WRS�GRZQ LQWHUYHQWLRQ IURP WKH XSSHU FRJQLWLYH OHYHOV VLPSO\ GR QRW

KROG KHUH� ,Q PRVW RI WKH FDVHV� VDFFDGLF PRYHPHQWV DUH JXLGHG SUHDWWHQWLYHO\ DQG XQFRQVFLRXVO\ >��@�

7KLV IORZ RI HYLGHQFH IURP HPSLULFDO VWXGLHV RI KXPDQ DWWHQWLRQDO YLVLRQ TXLWH ZHOO VXSSRUW DQG FRPH LQ
DJUHHPHQW ZLWK WKH LQVLJKWV RI WKH .ROPRJRURY¶V &RPSOH[LW\ WKHRU\� 6OLJKWO\ WZLVWHG WR ILW WKH FDVH RI LPDJH

LQIRUPDWLRQ FRQWHQW H[SORUDWLRQ� WKH ODWWHU FDQ EH ILQDOO\ �DQG LQ EULHI� VXPPDUL]HG DV IROORZV�

x ,PDJH LQIRUPDWLRQ FRQWHQW LV D VHW RI GHVFULSWLRQV RI WKH REVHUYDEOH LPDJH GDWD VWUXFWXUHV�

x 7KHVH GHVFULSWLRQV DUH H[HFXWDEOH� WKDW LV� IROORZLQJ WKHP WKH PHDQLQJIXO SDUW RI LPDJH FRQWHQW FDQ EH
IDLWKIXOO\ UHFRQVWUXFWHG�

x 7KHVH GHVFULSWLRQV DUH KLHUDUFKLFDO DQG UHFXUVLYH� WKDW LV� VWDUWLQJ ZLWK D JHQHUDOL]HG DQG VLPSOLILHG
GHVFULSWLRQ RI LPDJH VWUXFWXUH WKH\ SURFHHG LQ D WRS�GRZQ IDVKLRQ WR PRUH DQG PRUH ILQH LQIRUPDWLRQ GHWDLOV

UHVROYHG DW WKH ORZHU GHVFULSWLRQ OHYHOV�

x $OWKRXJK WKH ORZHU ERXQG RI GHVFULSWLRQ GHWDLOV LV XQDWWDLQDEOH� WKDW GRHV QRW SRVH D SUREOHP EHFDXVH
LQIRUPDWLRQ FRQWHQW FRPSUHKHQVLRQ LV JHQHUDOO\ ILQH GHWDLOV GHYRLG�
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)ROORZLQJ WKH PRGHUQ FRQFHSWV RI VHOHFWLYH DWWHQWLRQ YLVLRQ DQG WKH LQVLJKWV RI .ROPRJRURY¶V &RPSOH[LW\

WKHRU\� ZH SURSRVH D QHZ ZD\ IRU XQVXSHUYLVHG WRS�GRZQ LPDJH VHJPHQWDWLRQ IDFLOLWDWLQJ PHDQLQJIXO

LQIRUPDWLRQ FRQWHQW UHYHODWLRQ DQG JDWKHULQJ� � ,WV DUFKLWHFWXUH LV VKRZQ LQ )LJXUH �� DQG LW LV FRPSULVHG RI WKUHH

PDLQ SURFHVVLQJ SDWKV� WKH ERWWRP�XS SURFHVVLQJ SDWK� WKH WRS�GRZQ SURFHVVLQJ SDWK DQG D VWDFN ZKHUH WKH

GLVFRYHUHG LQIRUPDWLRQ FRQWHQW �WKH JHQHUDWHG GHVFULSWLRQV RI LW� DUH DFWXDOO\ DFFXPXODWHG�

7R IDFLOLWDWH WKH UHTXLUHPHQW IRU D WRS�GRZQ GLUHFWHG SURFHVVLQJ� ZH LQWURGXFH D KLHUDUFK\ RI PXOWL�OHYHO

PXOWL�UHVROXWLRQ LPDJH UHSUHVHQWDWLRQV FDOOHG PXOWL�VWDJH LPDJH S\UDPLG >��@� 6XFK S\UDPLG FRQVWUXFWLRQ

JHQHUDWHV D VHW RI FRPSUHVVHG FRSLHV RI WKH RULJLQDO LQSXW LPDJH� (DFK LPDJH LQ WKH VHTXHQFH FDQ EH VHHQ DV DQ

DUUD\ WKDW LV KDOI DV ODUJH DV LWV SUHGHFHVVRU� 7KH UXOHV RI WKLV VKULQNLQJ RSHUDWLRQ DUH YHU\ VLPSOH DQG IDVW� IRXU

QRQ�RYHUODSSLQJ QHLJKERXU SL[HOV LQ DQ LPDJH DW OHYHO / DUH DYHUDJHG DQG WKH UHVXOW LV DVVLJQHG WR D SL[HO LQ D
KLJKHU �/����OHYHO LPDJH� 7KLV LV NQRZQ DV ³IRXU FKLOGUHQ WR RQH SDUHQW UHODWLRQVKLS´�

/DVW �WRS� OHYHO
%RWWRP�XS SDWK 7RS�GRZQ SDWK 2EMHFW OLVW

6HJPHQWDWLRQ

&ODVVLILFDWLRQ

2EMHFW VKDSHV

/DEHOHG REMHFWV

7RS OHYHO REMHFW GHVFULSWRUV
� WR � FRPSUVG

LPDJH

� WR � FRPSUHVVHG

LPDJH

� WR � H[SDQGHG

REMHFW PDSV

/HYHO Q��

/HYHO �

/HYHO �

/HYHO Q�� REMHFWV

/HYO � REM�
� WR � FRPSUHVVHG

LPDJH

� WR � H[SDQGHG

REMHFW PDSV

� WR � H[SDQGHG

REMHFW PDSV
2ULJLQDO LPDJH

/ �

� � � � � � � � � � � � � � � �

)LJ� �� 7KH %ORFN 'LDJUDP �6FKHPD� RI WKH VXJJHVWHG DSSURDFK

$W WKH WRS RI WKH S\UDPLG� WKH UHVXOWLQJ FRDUVH LPDJH XQGHUJRHV D URXQG RI IXUWKHU VLPSOLILFDWLRQ� 6HYHUDO
LPDJH ]RQHV� UHSUHVHQWLQJ SHUFHSWXDOO\ GLVFHUQLEOH LPDJH IUDFWLRQV �YLVXDOO\ GRPLQDWHG LPDJH SDUWV�
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VXSHU�REMHFWV� DUH GHWHUPLQHG �VHJPHQWHG� DQG LGHQWLILHG E\ DVVLJQLQJ ODEHOV WR HDFK RI WKH VHJPHQWHG SLHFHV�

6LQFH WKH LPDJH VL]H DW WKH WRS LV VLJQLILFDQWO\ UHGXFHG DQG VLQFH LQ WKH FRXUVH RI WKH ERWWRP�XS LPDJH VTXHH]LQJ

D VHYHUH GDWD DYHUDJLQJ LV DWWDLQHG� WKH LPDJH VHJPHQWDWLRQ�FODVVLILFDWLRQ SURFHGXUH GRHV QRW GHPDQG VSHFLDO

FRPSXWDWLRQDO UHVRXUFHV� 7KXV� DQ\ ZHOO�NQRZQ VHJPHQWDWLRQ PHWKRGRORJ\ ZLOO VXIILFH� :H XVH RXU RZQ

SURSULHWDU\ WHFKQLTXH WKDW LV EDVHG RQ D ORZ�OHYHO �ORFDO� LQIRUPDWLRQ FRQWHQW HYDOXDWLRQ >��@�

7KH WHFKQLTXH ILUVW RXWOLQHV WKH ERUGHUV RI WKH SULQFLSDO LPDJH IUDJPHQWV� 7KHQ VLPLODUO\ DSSHDULQJ SL[HOV

ZLWKLQ WKH ERUGHUV DUH DJJUHJDWHG LQ FRPSDFW VSDWLDOO\ FRQQHFWHG UHJLRQDO JURXSV �FOXVWHUV�� $IWHUZDUGV� HYHU\

FOXVWHU LV PDUNHG ZLWK D ODEHO� 7KXV� D PDS RI ODEHOHG FOXVWHUV� FRUUHVSRQGLQJ WR SHUFHSWXDOO\ GLVFHUQLEOH LPDJH

UHJLRQV� LV SURGXFHG� )LQDOO\� WR DFFRPSOLVK WRS�OHYHO REMHFW LGHQWLILFDWLRQ� IRU HDFK ODEHOHG UHJLRQ LWV

FKDUDFWHULVWLF LQWHQVLW\ LV FRPSXWHG DV DQ DYHUDJH RI ODEHOHG SL[HOV� 7KLV ZD\� D VHFRQG �DGGLWLRQDO� VHJPHQWDWLRQ

PDS LV SURGXFHG� ZKHUH UHJLRQV DUH UHSUHVHQWHG E\ WKHLU FKDUDFWHULVWLF LQWHQVLWLHV�

)URP WKLV SRLQW RQ� WKH WRS�GRZQ SURFHVVLQJ SDWK LV FRPPHQFHG� $W HDFK OHYHO� WKH WZR SUHYLRXVO\ GHILQHG

PDSV DUH H[SDQGHG WR WKH VL]H RI WKH LPDJH DW WKH QHDUHVW ORZHU OHYHO� 7KH H[SDQVLRQ UXOH LV YHU\ VLPSOH� WKH

YDOXH RI HDFK SDUHQW SL[HO LV DVVLJQHG WR LWV IRXU FKLOGUHQ LQ WKH FRUUHVSRQGLQJ ORZHU�OHYHO PDS �D UHYHUVHG

VKULQNLQJ RSHUDWLRQ�� 6LQFH WKH UHJLRQV DW GLIIHUHQW KLHUDUFKLFDO OHYHOV GR QRW H[KLELW VLJQLILFDQW FKDQJHV LQ WKHLU

FKDUDFWHULVWLF LQWHQVLW\� WKH PDMRULW\ RI QHZO\ DVVLJQHG SL[HOV DUH GHWHUPLQHG LQ D VXIILFLHQWO\ FRUUHFW PDQQHU�

2QO\ SL[HOV DW UHJLRQ ERUGHUV �DQG VHHGV RI QHZO\ HPHUJLQJ UHJLRQV� PD\ VLJQLILFDQWO\ GHYLDWH IURP WKH DVVLJQHG

YDOXHV� 7DNLQJ WKH FRUUHVSRQGLQJ FXUUHQW�OHYHO LPDJH DV D UHIHUHQFH �WKH OHIW VLGH� ERWWRP�XS SDWK EHORQJLQJ

LPDJHV�� WKHVH SL[HOV FDQ EH HDVLO\ GHWHFWHG DQG VXEMHFWHG WR D UHILQHPHQW F\FOH� +HUH WKH\ DUH DOORZHG WR DGMXVW

WKHPVHOYHV WR WKH ³SURSHU´ QHDUHVW QHLJKERUV� ZKLFK FHUWDLQO\ EHORQJ WR RQH RI WKH SUHYLRXVO\ ODEHOHG UHJLRQV �RU

WR WKH QHZO\ HPHUJLQJ RQHV��

,Q VXFK D PDQQHU� WKH SURFHVV LV VXEVHTXHQWO\ UHSHDWHG DW DOO GHVFHQGLQJ OHYHOV XQWLO WKH

VHJPHQWDWLRQ�FODVVLILFDWLRQ RI WKH ]HUR�OHYHO �RULJLQDO LQSXW LPDJH� LV VXFFHVVIXOO\ DFFRPSOLVKHG� ,W LV FOHDU� WKDW

WKH UHFRQVWUXFWHG LPDJH LV QRW D ³-XVW 1RWLILHG 'LVWRUWLRQ´ YHUVLRQ RI WKH RULJLQDO RQH� +RZHYHU� IRU PRVW

GHFLVLRQ PDNLQJ SXUSRVHV DQ H[DFW GHWDLO�SUHVHUYLQJ LQIRUPDWLRQ FRQWHQW GHVFULSWLRQ RI DQ LPDJH LV LUUHOHYDQW� $W

HYHU\ SURFHVVLQJ OHYHO� HYHU\ LPDJH REMHFW�UHJLRQ �MXVW UHFRYHUHG RU DQ LQKHULWHG RQH� LV UHJLVWHUHG LQ WKH REMHFWV¶

DSSHDUDQFH OLVW� ZKLFK LV WKH WKLUG FRQVWLWXWLQJ SDUW RI WKH SURSRVHG VFKHPH� �1RWLRQV RI REMHFW DQG UHJLRQ DUH

XVHG LQ WKH SDSHU LQWHUFKDQJHDEO\�� 7KH UHJLVWHUHG REMHFW SDUDPHWHUV DUH WKH DYDLODEOH VLPSOLILHG REMHFW¶V

DWWULEXWHV� VXFK DV VL]H� FHQWHU RI PDVV SRVLWLRQ �FRRUGLQDWHV�� DYHUDJH REMHFW LQWHQVLW\ DQG KLHUDUFKLFDO DQG

WRSRORJLFDO UHODWLRQVKLS ZLWKLQ DQG EHWZHHQ WKH REMHFWV �³VXE�SDUW RI«´� ³DW WKH OHIW RI«´� HWF��� 7KH\ DUH

VSDUVH� JHQHUDO� DQG \HW VSHFLILF HQRXJK WR FDSWXUH WKH REMHFW¶V FKDUDFWHULVWLF IHDWXUHV LQ D YDULHW\ RI GHVFULSWLYH

IRUPV�

7KLV SDUW RI WKH SURFHVVLQJ VFKHPH LV �ZH VXSSRVH� WKH PRVW VXLWDEOH DQG QDWXUDO SODFH IRU H[WHUQDO XVHU

LQWHUDFWLRQ �D SODFH IRU WKH ³FODVVLFDO´ WRS�GRZQ LQWHUIHUHQFH�� 8VHU�GHILQHG WDVN�GHSHQGHQW UHTXLUHPHQWV FDQ EH

HDVLO\ IRUPXODWHG LQ KXPDQ�IULHQGO\ DQG KXPDQ�DFFXVWRPHG IRUPV� ZKLFK DUH SURYLGHG �VXSSRUWHG� E\ WKH

GHVFULSWLRQ LPSOHPHQWDWLRQV� 7KH GHVLUHG OHYHOV RI GHVFULSWLRQ GHWDLOV DUH WUDQVSDUHQW �LQ WKH OLVW� DQG DUH HDVLO\

DWWHQGHG�
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7R LOOXVWUDWH WKH TXDOLWLHV RI WKH SURSRVHG DSSURDFK ZH KDYH FKRVHQ DQ XQIDPLOLDU �WR PRVW RI WKH SRWHQWLDO

UHDGHUV� SLFWXUH ����� IURP WKH %HUNHOH\ 6HJPHQWDWLRQ 'DWDVHW >��@� %\ GRLQJ WKLV ZH ZDQW WR HOLPLQDWH ELDVLQJ

RI WKH REVHUYHU¶V MXGJHPHQW DERXW ZKDW LV WKH ULJKW VHJPHQWDWLRQ DQG WR GLUHFW WKH REVHUYHU¶V DWWHQWLRQ WR WKH

TXDOLW\ RI VHJPHQWDWLRQ SLHFHV DQG WKHLU DSSURSULDWHQHVV WR WKH ILQDO REMHFW VHJUHJDWLRQ DQG GHFLVLRQ PDNLQJ�

)LJ� � UHSUHVHQWV WKH RULJLQDO LPDJH� )LJV� �� �� DQG � DUH H[DPSOHV RI WKH RULJLQDO LPDJH GHFRPSRVLWLRQ WR

UHJLRQV RI YDULRXV GHWDLO FRPSOH[LW\� /HYHO � �)LJ� �� FRUUHVSRQGV WR WKH QHDU�WRS�PRVW KLHUDUFKLFDO OHYHO �LQ WKLV

SDUWLFXODU FDVH� IRU WKH VL]H RI WKLV SDUWLFXODU LPDJH WKH DOJRULWKP EXLOGV D ��OHYHO KLHUDUFK\�� /HYHO � �)LJ� �� LV

WKH ORZHU�HQG�FORVHVW GHFRPSRVLWLRQ� )RU VSDFH VDYLQJ� ZH SURYLGH RQO\ IHZ H[DPSOHV IURP WKH LPDJH

VHJPHQWDWLRQ JDOOHU\� ZKLFK IRU WKH UHDGHU¶V FRQYHQLHQFH DUH DOO H[SDQGHG WR WKH RULJLQDO LPDJH VL]H� ([WUDFWHG

IURP WKH REMHFW OLVW� WKH QXPEHUV RI GLVWLQJXLVKHG �VHJPHQWHG� DW HDFK FRUUHVSRQGLQJ OHYHO UHJLRQV DUH DOVR JLYHQ

LQ WKH FDSWXUH RI HDFK ILJXUH�

%HFDXVH UHDO REMHFW GHFRPSRVLWLRQ LV QRW NQRZQ LQ DGYDQFH� RQO\ WKH JHQHUDOL]HG LQWHQVLW\ PDSV DUH SUHVHQWHG

KHUH� %XW LW LV FOHDU WKDW HYHQ VXFK VLPSOLILHG UHSUHVHQWDWLRQV DUH VXIILFLHQW WR JUDVS WKH LPDJH FRQFHSW� ,W LV HDV\

�IRU WKH XVHU� QRZ WR GHILQH ZKDW UHJLRQ FRPELQDWLRQ GHSLFWV WKH WDUJHW REMHFW PRVW IDLWKIXOO\�
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)LJ� �� 2ULJLQDO LPDJH� ��� [ ��� SL[HOV�

)LJ� �� /HYHO � VHJPHQWDWLRQ� �� REMHFW�UHJLRQV�

)LJ� �� /HYHO � VHJPHQWDWLRQ� �� REMHFW�UHJLRQV�

)LJ� �� /HYHO � VHJPHQWDWLRQ� ��� REMHFW�UHJLRQV�

-���� 
��&��	
��

:H SUHVHQWHG D QHZ WHFKQLTXH IRU XQVXSHUYLVHG LPDJH LQIRUPDWLRQ FRQWHQW JHQHUDWLRQ DQG WRS�GRZQ LPDJH

GHFRPSRVLWLRQ WR LWV FRQVWLWXHQW YLVXDO VXE�SDUWV� :H UHO\ RQ D K\EULG ERWWRP�XS�WRS�GRZQ VWUDWHJ\ ZKLFK

SURGXFHV WKH VLPSOHVW �WKH VKRUWHVW� LQ WHUPV RI .ROPRJRURY¶V &RPSOH[LW\� GHVFULSWLRQ RI LPDJH LQIRUPDWLRQ
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FRQWHQW� 7KH OHYHO RI XQYHLOHG GHVFULSWLRQ GHWDLOV LV GHWHUPLQHG E\ WKH VWUXFWXUHV GLVFHUQDEOH LQ WKH LPDJH GDWD

DQG� WKXV� LV LQGHSHQGHQW IURP XVHU LQWHQWLRQV�

'HVSLWH D VHHPLQJ VLPLODULW\ WR WKH HVWDEOLVKHG PXOWLPHGLD FRQWHQW GHVFULSWLRQ VWDQGDUGV� ZKLFK �OLNH 03(*��

VWDQGDUG� H�J�� SURYLGH PHDQV DQG UXOHV IRU LPDJH LQIRUPDWLRQ FRQWHQW FUHDWLRQ DQG 6FKHPDV IRU 2EMHFW

'HVFULSWLRQ 'HVLJQ� RXU SURSRVHG DSSURDFK LV SULQFLSDOO\ GLIIHUHQW�

� 03(*�� GHVFULSWLRQ FUHDWLRQ UHOLHV RQ D ERWWRP�XS SURFHVV� >��@� 7KLV SRVHV H[WUHPH GLIILFXOWLHV IRU WKH

LQLWLDO REMHFW VHJPHQWDWLRQ�LGHQWLILFDWLRQ� 7KHUHIRUH VXFK D WDVN LV OHIW EH\RQG WKH VWDQGDUG¶V VFRSH�

� 03(*�� LV QRW VXSSRVHG WR SURYLGH LPDJH UHFRQVWUXFWLRQ IURP WKH GHVFULSWLRQV� $QDORJRXVO\ GHVLJQHG

GHVFULSWRUV FDQ RQO\ EH XVHG IRU LPDJH FRPSDULVRQ DQG VLPLODULW\ LQYHVWLJDWLRQ SXUSRVHV� �VXFK DV LQ &RQWHQW

%DVHG ,PDJH 5HWULHYDO DQG RWKHU :HE�UHODWHG DSSOLFDWLRQV� >��@��

:LWK UHVSHFW WR WKH VWDQGDUGL]HG WHFKQLTXHV� RXU DSSURDFK KDV SDOSDEOH DGYDQWDJHV� :H SURYLGH D WHFKQLTXH

WKDW DXWRQRPRXVO\ \LHOGV D UHDVRQDEOH LPDJH GHFRPSRVLWLRQ �WR LWV FRQVWLWXHQW REMHFWV�� DFFRPSDQLHG E\ FRQFLVH

REMHFW GHVFULSWRUV WKDW DUH VXIILFLHQW IRU UHYHUVH REMHFW UHFRQVWUXFWLRQ ZLWK GLIIHUHQW OHYHOV RI GHWDLOV�

����������

>�@ 5� -� 6RORPRQRII� ³$ )RUPDO 7KHRU\ RI ,QGXFWLYH ,QIHUHQFH´� 3DUW ,� ,QIRUPDWLRQ DQG &RQWURO� YRO� �� 1R�

�� SS� � ± ��� 0DUFK �����

>�@ 0� /L DQG 3� 9LWDQ\L� ³$Q ,QWURGXFWLRQ WR .ROPRJRURY &RPSOH[LW\ DQG ,WV $SSOLFDWLRQV´ ��
QG

HG��

6SULQJHU�9HUODJ� 1HZ <RUN� �����

>�@ *� -� &KDLWLQ� ³$OJRULWKPLF ,QIRUPDWLRQ 7KHRU\´� ,%0 -RXUQDO RI 5HVHDUFK DQG 'HYHORSPHQW� YRO� ��� SS�

�������� �����

>�@ 3� *UXQZDOG DQG 3� 9LWDQ\L� ³.ROPRJRURY &RPSOH[LW\ DQG ,QIRUPDWLRQ 7KHRU\´� -RXUQDO RI /RJLF�
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>�@ -� 0� :ROIH� 6� %XWFKHU� &� /HH� DQG 0� +\OH� ³&KDQJLQJ \RXU PLQG� 2Q WKH FRQWULEXWLRQV RI WRS�GRZQ

DQG ERWWRP�XS JXLGDQFH LQ YLVXDO VHDUFK IRU IHDWXUH VLQJOHWRQV´� -RXUQDO RI ([SHULPHQWDO 3V\FKRORJ\�

+XPDQ 3HUFHSWLRQ DQG 3HUIRUPDQFH� YRO� ��� SS� �������� �����
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6SULQJHU�9HUODJ� %HUOLQ� �����
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Abstract

This paper presents the tracking and analysis of lifting. Included in this paper is tracking along
important regions of the body such as the torso. We propose a method which detects improper and
proper lifting of large objects as seen in manufacturing and other industrial environments. We also
propose the same method to be used as a tracking device for the torso and object. This paper includes
a brief description of the ergonomics of lifting and those aspects of ergonomics that we included in
the creation of our algorithm. Through proper classification of important regions of the body, general
conclusions regarding the entities proper or improper method of lifting can be made. Along with the
importance of ergonomics in the world, this paper also addresses the importance of tracking specific
regions over time. By tracking the object that is lifted, a history can be developed on the movement
of the object. In that history, the location of the object at specific times and how and where it was
moved, dropped, etc. can be stored. Therefore this paper presents methods which can help ensure
the safety of the object and the person through computer and camera monitoring.
Keywords: Silhouette Extraction, Image Segmentation, Background S ubtraction, Image Tracking

1 Introduction and Related Work

According to the Bureau of Labor Statistics, one quarter of all injuries on the job are related to the back.
Many companies have designed products like the Ergocube Ergonomic Container. These containers and
others like them are designed to make lifting easier and better for workers. A system set up at a facility
that could detect store workers lifting habits and point out lifting which may cause severe injury would
be beneficial to workers and employers.

Tracking of objects is important to all areas of computer vision. Tracking of the torso is particularly
important because of all the information it gives regardingthe person’s location and posture. Tracking the
object lifted along with the torso of the person can together yield very important information on lifting
for surveillance and monitoring purposes. Certain actions such as a lift can be classified as gestures along
with other actions such as a wave or clap. See the following papers for more information on human action
and recognition of gestures: [3], [4], [5], [6], [7], [8].

1.1 Components Used in our Algorithm

There are two components taken from other work that are used in our algorithm. Both of these compo-
nents were modified slightly to be used in our application.

∗A special thanks to my advisors who oversaw my work.
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1. Rutgers Segmentation: The work done by [2] uses a simple nonparametric density estimation al-
gorithm for feature space analysis. In this algorithm there are three methods for segmentation,
under-segmentation, over-segmentation and quantization. For our method we used under segmen-
tation which corresponds to the lowest segmentation resolution.

2. Knight System: The method implemented in the Knight System is used in our algorithm for its
background subtraction algorithm as explained in [1]. The result of the difference between the
background model and the subsequent frames in a sequence is a silhouette of the person. When
an object in the background model is moved it becomes a part of the silhouette also, thus the
object is in two places at once. In order to determine which pixels are valid foreground pixels the
gradient and color based background difference are taken. The magnitude of the gradient in the
background model at the object’s original location is low but in the current frame where the object
is moved the magnitude of the gradient is high because the location of the object has changed.
A threshold, called the edge-ratio, is then applied to the product of these two gradient values.
When the edge-ratio threshold is set very low the background model is not updated with the new
uncovered background when an object is moved. When the edge-ratio threshold is set very high
the old background model is then updated with the new background pixels when an object in the
background model is moved. Taking the difference between the result of an image with a high
edge-ratio and a low edge-ratio results in a region that is the objects original location that will be
called the candidate object region . For a more detailed explanation of the Knight System and the
use of gradient based subtraction see [1].

2 Silhouette Extraction

The first step to extracting a definite region for the torso and object is to use background subtraction to
extract a silhouette of the person and objects moved. We use the background subtraction from [1]. In
that approach we change the edge-ratio, as described in section 1.1.2, to 65%1. Because objects move
from background to foreground when they are lifted in the scene, we do not want to include them in
the bounded region after they are set down and no longer part of the silhouette. Using our connected
components algorithm we accept only the connected regions of the background subtracted image.

In our connected components algorithm we first go to the background subtracted image with a 65%
edge-ratio. At every white pixel in this binary image of the silhouette we dilate. Our connected compo-
nents algorithm then finds the largest component of white pixels and keeps all other components within
10 pixels horizontally and 50 pixels vertically. We reason that components can be further away in the
vertical and still be likely candidates of the silhouette whereas components that are far away in the hori-
zontal are much less likely to be part of the silhouette. This conclusion is made due to the understanding
that most people are taller than they are wide. The thresholds we chose may very as video sequences
vary in complexity, however, these values worked best for the sequences that will be mentioned in the
Results section.

Using the bounding box above, we then divide it into four different rectangular regions where the
head-region is the top 16% of the bounding box and the torso-region is the next 33% of the region. The
final 51% of the bounding box is then divided into two, where the top half is the upper leg-region and
the bottom half is the lower leg-region. These individual rectangles in the bounding box give a region
where most of each corresponding part of the body is likely to be found. These values were obtained
through experimentation with video sequences we worked with and through work done by a previous
REU2 student who worked before me on carried bag detection at the University of Central Florida.

1This value allows for shadow removal, ghost object removal as well as large luminance changes which could result in
erroneous background subtraction. This number was obtained by reading [1] and testing with many types of images with
varying luminance and complexity.

2Research Experience for Undergraduates funded by the National Science Foundation

105



Michael Wells

3 Bounding Box Segmentation and Torso Identification

The next step is to locate the torso in the bounding box. The torso is always found in the torso-region
just below the head-region. Sometimes part of the torso is cut off by the head-region, therefore we
look in both regions for the torso. By combining the result from the segmentation image and background
subtraction image we find the segmented region with the highest percentage of background subtraction
pixels. This method extracts the torso while the torso is in view. The method fails when the background
is nearly the same color as the torso region of the foreground. In this extreme case even the background
subtraction might fail. It is my goal in the future to use shape, contour3, and gradient based information
along with color information to locate and track the torso.

To solve the problem that may occur when separate regions are very close in color, we store the
location of the torso pixels when identified for certain, and that location is not updated to a new position
until a new confirmed torso region is found. The torso-region is tracked much like the object, which will
be explained later on. Based on a history of the movement of the torso we can then predict approximately
where the torso will be in the next frame by finding the average change in the horizontal and vertical
components of the vector created by the movement of the torso from frame n to frame n+1. This same
optical flow method is also used for minor occlusions when the torso region is not in complete view.

Once the torso is extracted we then find the second moment4 line for the region to simulate the person’s
backbone. By tracking the orientation of this line with respect to the vertical we can determine when and
how much their back is tilting. The torso algorithm depends greatly on the success of the detection of
the object. Our algorithm confuses the object for the torso if our object tracker is turned off. Therefore
they need to work together for the best results.

4 Visual Characteristics of a Lift

Our lifting detection algorithm is weighted by three parameters. When all three parameters are consid-
ered true the system concludes that a lift has occurred. In order to determine where the object is we
assume that when a large object is picked up the person will descend over a certain threshold5 . We use
the first 0.6667 sec after the person has come into view to determine the average height of the individual.
From that moment on after every lift the average height is recalculated over 0.6667 sec. As a person
moves around lifting various objects the height of the person decreases as the person moves further away
from the camera6. By recalculating the height throughout the sequence this ensures the accuracy of de-
tecting a lift properly. If the person descends pass the threshold and then comes back over that threshold
we conclude that the person has bent down and is now coming back up. This motion, called a squat, is
the first parameter used to determine when to search for an object.

From the moment that the person is in view we calculate the silhouette’s average width using the
minor axis of a best fit ellipse. Before the person completes the squat we calculate the average width
over 0.2 sec. Using the minor axis of the best fit ellipse for the silhouette we determine if the minor
axis has increased by more than a certain threshold7 . At this point, when the second parameter has been
satisfied, we assume the person is holding something. Based on these two parameters we then go to the
third parameter which will be explained below in the object detection section.

3my current research has been using the heat differential equation to find contours.
4The second moment of inertia is mathematically defined as

∫∫

Region
r2dxdy

5This value can be set based upon the type of input images
6This phenomena is called parallax
7This value is set by the user
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5 Object Detection

Once we know that the person has gone up and down, the squat parameter has been satisfied. We can
then look for the object and begin tracking. We determine thecandidate region for the object through the
method described in section 1.1 Components Used in our Algorithm item 2 Knight Method. Based on
the method used in the Knight System we chose to take the difference between the result of the image
with the edge-ratio set at 40% with the result of the same image with the edge-ratio set at 80%. The
difference between these two resulting images produces the candidate object region . We chose 80% and
40% because these values created the best results for the video sequences we tested, however these value
may need to be adjusted based on varying background and luminance conditions in that may come to
exist in an image.

The candidate object region obtained from some frame n is then tracked through the k frame history
from the oldest fram in the history to n using Sum of Squared Differences, which will be explained in
more detail in the next section. For our system we chose the value of forty for k. Through experimentation
with video running at 30 fps, forty frames or 1.333 seconds of video is the best value for k because this
value keeps track of a long enough history for the lifter to lift the object. If lifting takes longer than
forty frames the value can be increased. I chose forty in particular to save computation time and space.
As long as the history is shorter than the number of frames between two consecutive lifts the method
will work. If the history is too large then the system will fail because it will overlap the lifting of more
than one object. With more than one object lifted in the history sequence the system will not be able to
distinguish which of the two objects is currently being lifted.

6 Object and Segment Tracking

Once the object is detected as explained above, we use our k frame history to find the current location of
the object8. When the candidate object region is located, the object is then tracked through the k frame
history up to its current location. Tracking is done through a method of Sum of Squared Differences
(SSD). The candidate object region is used to generate a mask of pixels which is the maximum rectangle
generated from the candidate object region . The (R,G,B) pixel values are then taken form the original
color image based on the location of the rectangular mask obtained. Once the best fit mask is found for
the object we then recursively fill the object region. Taking each neighboring pixel individually, if the
pixel difference with its neighboring pixel is less than or equal to some threshold for each component in
the color vector (R,G,B) then the new pixel is stored in the mask. The object pixels are then eroded and
dilated and finally a new mask is generated9 .

Once this optimal mask Orgb is found, the method looks to the next frame in the sequence and deter-
mines which possible mask Nrgb has the smallest difference.

min





5
∑

x=−5

5
∑

y=−5

(

(Orgb − Nrgb)
2
)



 (1)

If the object is, for example, a backpack, and the person turns around, the object becomes occluded by
the person’s torso. In order to solve this tracking issue we first determine when the object is occluded.
If the result from equation 1 deviates more than some threshold value from Orgb we place the bounding
box and the pixel locations of the mask in the middle of the torso. While the new location of the mask
is inside the torso, the original color values are still stored. We continue to search for the object in some
neighborhood10 while the object is occluded. When the object comes back in view after the occlusion

8The lifted object is not identified until the object has been significantly moved from its old location.
9In this new region, every other pixel is stored as the tracking mask to reduce the time it takes to search for the best translation

of the mask that corresponds to the object.
10This neighborhood is defined by the user and varies based on the resolution of the image.
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we then pick up the object again when the result from equation 1 falls in the reasonable region of some
threshold. This method for occlusion works only when the person is occluding the object while carrying
or lifting. It is our goal to improve this method to handle all kinds of occlusion. The tracking thresholds
were chosen by us because they worked well for our images but these values can be tightened or relaxed
based on the detail of the video sequence and are independent of the design of the algorithm itself. The
higher the resolution and more pixel information that exists the more strict the tracking thresholds can
be when searching for the best mask translation.

7 Determining Proper and Improper lifts

The primary injury to the body in an improper lift is to the spinal column. When the back is arched or
bent it puts uneven stress on the spine. The spine is a collection of vertebra stacked on one another in
a column separated by discs that allow the spinal column of bones to bend without grinding each other
and wearing away at the bone. When an object is lifted with the spinal column vertical or very near
vertical the vertebra and discs compress evenly together. However, when the spinal column is bent or
arched the line created by the force of the load on the spine downward compared to the line created by
the spinal cord is increased. As the angle is increased the more unevenly the force is being dispersed
over the vertebra. This uneven dispersal of force over the vertebra damages the spinal column causing
back pain.

Based upon the extraction of the torso-region and object-region we can make many conclusions on
proper and importer lifting. While the person is lifting the object, we can determine how many degrees
their back has bent by finding the angle between the ground and the best fit line of the torso-region.
This method works as long as the lift occurs in a reasonable profile view. Determined by our research,
a reasonable view is maintained when the person is not turned more than 45 degrees from the profile
position during a lift. Once they have lifted the object the system works with a fixed camera as long
as the person stays in view and not in front or behind the object being lifted. The system fails under
these two scenarios because the object is tracked based upon edge detection and when the person and the
object are blended together in a lift the edge detection fails.

According to an Ergonomic Survival Guide for Laborers created by Cal/OSHA, lifting or carrying
a 10 pound object 25 inches from your spine is equivalent to 250 pounds of force on your lower back
whereas the same 10 pounds carried 10 inches from your spine is equivalent to 100 pounds of pressure
exerted on your lower back. It is difficult to make conclusive measurements of the distance of the object
from the spine unless a constant profile view is maintained. Therefore, for now we use the degree the
back bends during a lift to detect an improper lift. For now, if the back bends more than 30 degrees
during a lift we consider this improper and the person lifting may be putting their self in serious danger.
This value can be changed based on more study done in the area of ergonomics.

8 Discussion and Future Work

The sequences in the table varied from lifting single objects including bags, boxes and trash cans to
lifting up to three objects in one sequence. We also tested a sequence were a person bent down to lift an
object but failed to lift.

Our algorithm works very well for these sequences. Our algorithm depends primarily on good back-
ground subtraction. Poor lighting is a primary cause to failure in our algorithm. Occlusion during lifting
also causes our method to fail in detecting the object. It is important that the object be more than half in
view for the lifted object to be properly tracked. Tracking the torso almost never fails. However, if the
object detection fails and the object is brought close to the torso then our method has a high probability
of confusing the torso with the object11.

11In all of our sequences, if the object is detected with accurately then the torso is detected accurately as well.
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sequence name frames lifts correct id torso id object
LIFTLEAVE 600 1 1 100% 100
NOLIFT 720 0 N/A 100% N/A
SITNOLIFT 288 0 N/A 90% N/A
LIFTSET 780 1 1 91% 95%
LIFTBAGOCC 1140 1 1 93% 100%
THREELIFTOCC 2220 3 3 98% 93%
LIFTLEAVE2 222 1 1 100% 60%

For now it is very difficult to determine an improper and a proper lift if a reasonable profile view is
not maintained.Therefore, we propose that in the future, if four synchronized cameras were placed at 90
degree intervals around the person this would eliminate the problem of not seeing enough of the person
to distinguish between an improper and proper lift.

The system works very well for larger objects that range from about a quarter to half the size of
a person. Once the object size begins to deviate from this optimal range it is difficult to locate the
object. For small objects, sometimes a persons hand covers most of the object during a lift, and this can
sometimes cause problems with the current method of tracking which is based primarily on color. Even
though the object may be lost, the torso is still maintained and the system knows that an object has been
lifted, however the location of the object in this case may be unknown. Judgments can still be made on
the lift but not as well as having the exact location of the object with the location of the torso. When
an object becomes too large there is not much displacement of the object during a lift and ours system
fails here. Our algorithm depends on the nearly complete displacement of the object from its original
position.
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Abstract 
This work presents a biometric method for identification vector building based on 
human iris features. The proposed work is based on iris texture features analysis and 
extraction. The work is divided in 3 steps. In the first, the eye image is preprocessed 
and Hough Transform for circles does the iris localization and segmentation. In the 
second step, the iris features information is extracted by a second order statistical 
approach, using the Haralick’s texture features as classification parameters. Finally in 
the last step, the information is saved in a feature vector that can be used for iris 
recognition. 
 
Keywords: Haralick, pattern recognition, biometrics, iris, texture. 

 
 
1 Introduction 
 
Biometry is the group of automatic methods used in people recognition, based in physiological or 
behavioral features. Examples of behavioral features are signature, gait, voice, etc. Examples of 
physiological features are fingerprint, face, iris, hand geometry, the veins in ocular retina, etc. One 
of the biometric advantages, if it is compared with conventional methods, is the possibility of 
identify, authenticate and localize people without requiring that they carry cards or memorize 
passwords [1]. 
Recently, the number of studies and researches in iris recognition has increased significantly. This 
crescent increase happens because, in identification systems, iris is more efficient, stable and 
accurate than the others biometric features [2]. 
The iris is the circular and retractile membrane, which is localized in the center behind the ocular 
globe. It’s situated between the cornea and the anterior part of crystalline, and it has an orifice, the 
pupil. The fig. 1 shows the iris position in relation to a person eye. 

 

 
Fig. 1. Eye anatomy. 
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Formed by a multi-layer structure, the iris has a very complex color and shape pattern. It can be 
observed in fig. 2. 
 

 

 
Fig. 2. Iris structure seen in a frontal sector. 

 
The human iris possibility of been used as a biometric signature was first suggested by 
ophthalmologists [3]. They verified, through clinical experience, that each iris had a very detailed 
texture. 
Recognition biometric systems based on iris study are possible because of some features. The most 
important of them is the iris uniqueness, which is a result of the chaotic organization of its patterns, 
established by the initial conditions in the embryonic genetic, [4]. The probability of two people 
having the same iris pattern is estimated in one in 1078 people. As written in [5], the right and left 
eyes of the same person have different texture patterns. 
Another important feature is the iris stability. A normal iris is usually lubricated and preserved by 
the cornea and aqueous humor, becoming one of the most protected organs in a human body. 
Besides, the localization, size, shape and orientation remain stable and fixed from about one year of 
age throughout life [6]. 
 
2 Iris localization 
 
The iris localization in an image is the task of find a ring situated between the pupil and the 
sclera. It is equivalent to finding non-concentric circles which determinate the internal and 
external borders of the ring. The method used in this work finds the center coordinate and 
the ray of the pupil, which is the internal border of the iris, through the Hough Transform 
(HT) for circles [7]. 
Compared with all others parts in the image, the pupil is much darker. So, after the application of a 
threshold, followed by an edge detector, the image will be ready to the Hough Transform 
technique. 
The width of the iris ring used is fixed, separating just the iris region near the pupil. 
Due to partial iris occlusion by the eyelid and eyelashes, the upper part of the iris ring was removed 
and it is not used in the algorithm sequence. The fig. 3 shows an original image (a) and the same 
image after the iris localization (b). 
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Fig. 3. (a) Original image. (b) Segmented iris. 

 
After the pupil and consequently the iris localization, the system becomes robust to the pupil size 
and the position of the eye in the image. 
 
3 Haralick’s features 
 
In this work, it is proposed an iris feature extraction methodology based in the Haralick’s approach 
[8]. It uses second order statistics, by analyzing the relative position of the image pixels. Through 
this method, distinct images with equal first order histograms still can be differentiated. 
The second order statistical measures are done in probabilities’ distributions or co-occurrence 
matrixes. These matrixes (GLCM – gray level co-occurrence matrix) are bi-dimensional 
representations showing the spatial occurrence organization of the gray levels in an image. They 
represent a bi-dimensional histogram of the gray levels, where fixed spatial relation separates 
couples of pixels, defining the direction and distance (d,θ) from a referenced pixel to its neighbor. 
To build these matrixes, the couple of pixels’ variation is done in the following angles: 0°, 45°, 90° 
e 135°, originating four distinct co-occurrence matrixes. 
After computing the co-occurrence matrixes, several second orders statistical calculus can be 
calculated, including the Haralick’s features. These are the features used in this work: 
 

• Second Angular Moment (SAM): measures the local homogeneity of gray levels in an 
image. The SAM equation is given by: 
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• Contrast: it measures the local quantity of gray levels in an image. The Contrast 
equation is given by: 
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• Entropy: also called as dispersion degree of the gray levels, it measures together with 
the SAM, the homogeneity in an image. The Entropy equation is given by: 
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• Inverse Difference Moment (IDM): The IDM equation is given by: 
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• Correlation: it represents the linearity dependence of gray levels in an image. The 
Correlation equation is given by: 
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And, µx and µy represent the mean in X and Y direction, and σy and σy represent the 
variance. 
 

4 Feature vector 
 
In this work, the segmented iris is divided into six sectors having the same size, as showed in fig. 4. 
The number of sectors was defined to increase the classifying method efficiency through the 
texture features. 

 

 
Fig. 4. Segmented iris divided in six sectors. 

 
For each sector, the five Haralick’s features are calculated resulting in a feature vector with 30 
values. This vector will be saved in the database or used in an identification or authentication 
process. 
 
5 Image database 
 
The image database used to test the algorithm, CASIA version 1.0 [9], was developed by the Iris 
Recognition Research Group - National Laboratory of Pattern Recognition (NLPR) from the 
Institute of Automation, Chinese Academy of Sciences. The dataset has images with 256 gray 
levels, and resolution of 320x280 pixels, captured through a digital optical sensor also developed 
by the NLPR. There are 756 images of 108 eyes from 80 people. 
In this dataset, seven images were taken from each iris, in two different moments. In the first one, 
three images were taken and in the second moment, one month later, more four images were taken. 
 
6 Tests and results 
 
The algorithm finds the proximity of two irises calculating the normalized Euclidian distance of the 
two features vectors, as described in equation 6.   
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The fig. 5 shows an example of the distance calculus between an iris and the others 107 resting in 
the database. 
 

 

 
Fig. 5. Euclidian distance example. 

 
For each comparison between two irises' images, the algorithm returns a number. To show if the 
vectors are from the same iris, the algorithm compare the value returned with a t (threshold) value, 
previous established. With this information, it's possible to evaluate the system accuracy varying 
the t value and building the ROC curve (receiver operating characteristic). 
To build the ROC curve, it was generated a dataset with the mean feature vector taken from each 
one of the 108 irises of the database. The mean vectors were obtained calculating the means among 
the seven features vectors from each image of the same iris. 
After that, for each t value it was done an authentication try between each database image and the 
others 107 irises. As the database has 756 images, 81648 authentication tries were done. During the 
authentication tries, the number of false accepted (FA) and false rejected (FR) were found. The 
Table 1 and the figure 6 show the FA and FR probability's distribution with the t variation. 
 

Table 1. False accepted probability, P(FA) and false rejected probability, P(FR).

t P(FA) P(FR)
0,00 100,000% 0,000% 
0,05 47,153% 3,571% 
0,10 43,496% 3,704% 
0,15 39,726% 4,101% 
0,20 35,634% 4,762% 
0,25 31,469% 6,085% 
0,30 27,150% 7,011% 
0,35 22,927% 7,804% 
0,40 18,671% 9,392% 
0,45 14,532% 11,243% 
0,50 10,673% 13,889% 
0,55 7,347% 17,989% 
0,60 4,604% 22,354% 
0,65 2,479% 27,910% 
0,70 1,024% 35,185% 
0,75 0,307% 47,222% 
0,80 0,066% 62,963% 
0,85 0,002% 78,704% 
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0,90 0,000% 94,577% 
0,95 0,000% 100,000% 

 

 

Fig. 6. False accept probability, P(FA) and false reject probability, P(FR). 
 
The ROC curve, which represents the system accuracy, is showed in fig. 7 and was built with the 
P(FA) e P(FR) values showed in figure 6. 
 

 

Fig. 7.  ROC curve. 
 
Conclusion 
 
The ROC curve analysis validates the Haralick’s features for using as a biometric feature extraction 
of human being, because they can reproduce the iris unique feature. Also, it is possible to conclude 
that the way chosen to divide the iris ring is an efficient method to obtain a uniform texture region. 
Another important point is that in the majority of the cases, the false accepted and the false rejected 
were obtained due to some kind of fail in the iris image. The partial occlusion and the lack of focus 
were the principal fail reasons. Fig. 8 shows an eye image with the iris very obstructed, what turns 
its identification a hard job. 
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Fig. 8. Partial occlusion of the iris. 

 
The identification also becomes difficult when the images, used to build the mean feature vector, 
have many differences. 
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Abstract 
In general a three-dimensional measurement system is established by considering the 
geometric configuration of the system, such as CCD camera and structured light, etc., 
because the system measurement is based on the principle of triangulation. Once the 
configuration has been determined, it must be maintained until the measurements have 
been completed. The main disadvantage of such systems is the dead-angles that 
inherently exist in a single image taken from a fixed angle. 

This paper proposes a new approach to three-dimensional reconstruction of an object 
shape using multiple silhouette images that are taken from arbitrary random angles. 
The technique can be realized by utilizing a magnetic sensor that is attached to the 
CCD camera. The distinctive feature of this system is that it reduces the limitation of 
the target in terms of size, shape and obstruction, etc. but more importantly it reduces 
the dead-angle problem of measurement. 
   Experimental results show the feasibility of our system. 
 
Keywords: Silhouette, Magnetic Sensor, Measurement, Three-dimensional 

 
1. Introduction 
This paper addresses a new approach to 3D reconstruction of an object’s shape using a simple setup. 
In general, the object to be measured is digitalized from many images that include structured light 
(slit-ray) information taken from different positions. Quantitative measurement is established by 
considering the geometric configuration between the CCD camera and the structured light [1]-[2]. 
Although 3D measurement methods have achieved a high level of satisfaction in limited fields, 
unmeasurable areas exist in many cases such as behind the object. 
    In order to reduce the unmeasurable area, a practical hand held laser scanning system has been 
developed by BC McCallum, etc [3]-[5]. An electromagnetic spatial locator determines the position 
and orientation of a hand-held assembly during the scan. Three-dimensional measurement can be 
achieved by just pointing the laser slit at the target.  
   The problem with systems that utilize a laser, e.g., a hand held laser scanner, is that the results 
can be affected by the color of the object. An object with a black or mirror surface cannot be 
measured since the CCD camera does not detect the laser light clearly enough from the surface.  
   It is well known, that the silhouette of an object also depicts the shape of object and can be 
determined without using a laser slit. Some researchers use the silhouette information for shape 
measurement [6]-[9]. Since this does not rely on the use of a laser, the measurement is not 
influenced by the color of the object, and the system is therefore simple and safe. Quantitative 
measurement can be achieved by knowing the relative configuration between the CCD camera and 
the object. In these systems, a turntable or rotating arm with an attached CCD is often used to 
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reduce the dead-angle. The use of a turntable or rotating arm maintains the relative configuration 
between the CCD camera and the object while taking quantitative measurements. However, the 
restriction of relative movements between the CCD camera and the object limits the size and shape 
of the target objects.  

In this paper, a measuring system that enables arbitrary free movement of the CCD camera 
during measurement is introduced. Many silhouette images are recorded from arbitrary different 
angles. As an electromagnetic spatial locator is directly attached to the CCD camera, the sensor 
measures the three-dimensional position and the orientation of the CCD camera: at a frequency of 
60Hz. Multiple images of the object are taken at arbitrary free angles, including measurement of 
the location and orientation of the CCD camera. The information from the different image views is 
then combined to reconstruct the 3D object on a computer display with minimum loss of data.   

A typical application of this system, the measurement of agricultural products, is introduced in 
this paper. Recently in Japan, the quantitative measurement of agricultural products has been made 
a requirement to guarantee and maintain quality control. The proposed system has been 
successfully applied to quantify a product shape. Experimental results show the feasibility of the 
system. 

 
2. System Set-up 
The system set-up, shown in Fig.1, is composed of a CCD camera, a 3D magnetic spatial locator 
(Polhemus Fastrack) and a personal computer. The receiver of the spatial locator is fixed on the 
CCD camera. The location and orientation of the CCD camera is measured at a frequency of 60Hz 
by the 3D magnetic spatial locator. Each CCD pixel, at a particular row and column, on the outline 
of the silhouette can be represented in camera coordinates pc (the origin of which is on the focal 
point of the camera) by considering the camera parameters such as the focal length, resolution, etc. 
As we know the relationship between the receiver coordinates and camera coordinates, the camera 
coordinates pc can be converted into the corresponding receiver coordinates pr.  
 
The spatial locator’s transmitter, which is positioned in the vicinity of the CCD camera, is fixed 
relative to the object. The spatial locator’s control unit returns the translation vector t and the 
rotation matrix M of the receiver coordinate system relative to that of the transmitter. The point in 
transmitter coordinates pt can then be computed using the spatial locator output data from 

Pt= t +Mt pr         (1) 
Where the pr is the point in receiver coordinates [3].  
The backboard positioned behind the object is used to increase the contrast between object and 
back-image. 
 
 

    
 
 
 
     Image detector 
 
 
                     Object 
 
Magnetic receiver                  Personal computer 
 
              Transmitter                 Magnetic  
                                        Controler        

                         CCD  
                         Camera 
 
 
             Receiver 

 
 

Fig.1 system setup 
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3. Object Reconstruction From Silhouette Images 
The outline image of the object is used in the reconstruction method. An example of the image is 
shown in Fig.2c. Since the images are two dimensional, the real size of the image cannot be 
estimated without extra information such as depth/distance etc. However, the hatched area, see 
Fig.3, which has the same cross-section as the outline of the object, can be selected and used to 
estimate the volume of the object within the hatched area. The rate of expansion of this area is 
determined by the focal length of the camera. Our method reconstructs the object from multiple 
estimated volumes obtained at arbitrary angles. Then each estimated volume is converted into the 
transmitter's coordinates and the final volume can be extracted by deleting the outsides of the each 
estimated volume, see Fig.5. The technique can be likened to the way a sculptor would sculpt a 3D 
figure in order to make a statue. 

            
 a. Object b. binary image c. outline of object 
Fig.2 Example of extracted silhouette image. 

  
 
 
 
 
 
 
Monitor 
                             Object 
 
 
                   Image Plane 
 
           CCD camera   

Fig.3 Hatched area used to estimate the volume of an object. 

                        
 

Fig. 4 Image acquisition from arbitrary free 
angle.   
 

Fig.5 The extraction of final volume of the 
object 
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 The outline of the object is used to determine the volume of the object. Fig.6 shows projection 
lines that pass through the outline image in the image plane and the object. The relationship 
between the point (u,v) on the outline in the camera coordinates and the relative coordinates (x,y,z) 
on the receiver  is expressed as follows. 
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                                      Object 
 
 
 
                           Image Plane 
 
             CCD Camera 

 
Fig.6 Lines pass the outline and Focus point 

 
 Parameters (k11-k33) are introduced by considering the rotation and displacement. This equation 

can be expressed also as following by expanding. 
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The eleven parameters (k11-k33) are determined from the calibration procedure by feeding some 
corresponding coordinate pairs of positions that are already known. The calibration setup is shown 
in Fig.7. The image of the scale board is recorded by the CCD camera and is displayed on the 
computer display. A mouse device and a keyboard then used to register the positional pairs 
between the camera coordinates and the receiver coordinates, respectively.  

  
               Scale boad 
 
 
 
 

x 
 

CCD camera 
with magnetic sensor 
         z 
 
 
 
   
          y 

 
Fig.7 Calibration setup 
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Equation (3) indicates the two planes, and the intersectional line between these planes indicates the 
line that passes through focal point and the outline of the object. The line can be expressed as 
follows, in receiver coordinates. 
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Where (f,g,h) is a direction vector and (x1,y1,z1) is the translation vector. The receiver coordinates 
can be converted to the transmitter coordinates using the following formula. 
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Where (wx,wy,wz) is the translation vector of the receiver coordinate system and RPY(Ψ, Θ, Φ) is 
the rotation matrix of the receiver coordinate system relative to that of the transmitter. The resultant 
lines produced by (5) construct the outside of the estimated volume on the transmitter’s coordinates. 
Fig.8 shows the cross-section of the estimated volume on the horizontal plane z1. The cross section 
can be determined by finding the intersection points between the lines from focal point to the 
outline and the plane z1. The cross-section can be determined by combining the estimated volume 
obtained at different angles. Fig.9 shows the cross section of the measured cylinder. The whole 
volume of the object can be reconstructed by accumulating the cross-sections on different planes zn. 
Fig.10 shows the whole volume of the measured cylinder. The average error of the measurement 
for this object was 1.5 mm.  
 
4 Shape Measurements Of Agricultural Products 
Generally, in the evaluation of agricultural products, a human inspector judges the quality of the 
product by comparing them to a known standard sample. In this manual method, however, 
individual differences occur in the evaluation. For this reason, the quantification of agricultural 
products is required.  
   The purpose of this experiment is to demonstrate that the quantification of a product shape using 
our computer vision system. Fig.11 shows the result of reconstruction of a banana on the computer 
using the measured data. It takes about 1 minute to measure the outline of the banana by an 
inexperienced operator. However, with training and optimized computer programming this time 
could be greatly reduced. 
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        x  

 
Fig.8 Determination of the cross-section of estimate volume 

 

 
Fig.9 The estimated cross-section of the 

cylinder 

10

20
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Fig.10 Whole volume of cylinder 
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Fig.11 Measurement of banana 

5 Conclusion 
 A three-dimensional measurement system which enables a three dimensional reconstruction on 

a computer using silhouette images recorded from arbitrary free angles has been introduced. Since 
measurement device consists only of a CCD camera with a magnetic locator, the system is compact 
and flexible for many different kinds of objects to be measured. An operator can easily change the 
position and angle of the CCD camera according to the shape and the size of the object. The CCD 
camera should to be positioned closer to the object when the size of the object is small and it to be 
farther away for larger objects. To a degree the results depends on the operator’s experience, but 
once they have become accustomed to using it, it would be very good tool for measurement.  

The measurement of agricultural products was introduced by way of example of the type of 
applications suitable for our system. However, the system has possibilities that can be applied in 
various other fields.  
 
 

Reference 
[1] Three-dimensional computer vision(1996), A geometric viewpoint, Olivier Faugeras 
[2] Computer vision: Theory and industrial application(1992), Springer-Verlag, 1992 
[3] B. C. McCallum, W. R. Fright, M. A. Nixon and N. B. Price(1996), A Feasibility Study of 

Hand-held Laser Surface Scanning, Proc. of Image and Vision Computing NZ, Lower Hutt, pp. 
103–108. 

[4] M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price(1998). The effects of metals and 
interfering fields on electromagnetic trackers. Presence, MIT Press, Volume 7, Number 2, pp. 
204-218. 

[5]  B. C. McCallum, M. A. Nixon, N. B. Price and W. R. Fright(1998), Hand-held Laser 
Scanning In Practice, Proc. of Image and Vision Computing NZ, The University of Auckland,  
pp. 17-22. 

[6] H. Baker(1977), Three-dimensional modeling. In Fifth International Joint Conference on 
Artificial Intelligence, pages 649–655. 

[7] B.G. Baumgart(1987), Geometric modeling for computer vision. Technical Report AIM-249, 
Artificial Intelligence Laboratory, Stanford University 

[8] W. N. Martin and J. K. Aggarwal(1987). Volumetric description of objects from multiple 
views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(2):150–158. 

[9] P. Srivasan, P. Liang, and S. Hackwood(1990). Computational geometric methods in 
volumetric intersections for 3d reconstruction. Pattern Recognition, 23(8):843–857. 

 

122



A PERFORMANCECHARACTERISATION IN

ADVANCED DATA SMOOTHING TECHNIQUES
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Abstract

A comparison paper is presented to evaluate the results from five smoothing filters. The filters are
linear, nonlinear isotropic and nonlinear anisotropic designed to smooth homogeneous areas while
preserving the higher moments in the data. The methods are outlined and then evaluated on the extent
to which edge information is preserved and unwanted noise is suppressed.
Keywords: Smoothing, adaptive, Savitzky-Golay, diffusion

1 Introduction

The noisy images presented in medical imaging has led researchers to investigate methods of smoothing
image noise while maintaining important information such as edges.

There are two main types of smoothing, linear and non-linear. Both of these types have being ex-
tensively studied in literature. Traditional linear filters such as mean, average and Gaussian attempt to
remove noise by replacing each pixel by an average or weighted average of its spatial neighbours [2].
While this reduces the amount of noise present in the image, it also has the disadvantage of removing or
blurring the edges. Nonlinear filters, the most common being the median filter, modifies the value of the
pixel by some nonlinear function of the pixel value and its spatial neighbours. Nonlinear filters maintain
the edges but the filtering results in a loss of resolution by suppressing fine details. More recently, the
use of edge-based diffusion has emerged [1, 3, 4, 5, 6]. These filters require a trade-off between smooth-
ing efficiency, preservations of discontinuities and the generation of artifacts. In short the diffusion or
smoothing term is a variable over space and time and in [3], this term is a function of the magnitude
of the gradient intensity at the point in question. Gerig [4] extended this case to 3D and performed the
diffusion on medical volumes. Perona and Malik’s [3] diffusion has the disadvantage that it stopped
the diffusion at edges, this was advanced by [7] by permitting diffusion along the direction of the edges
making it anisotropic.

This paper compares five filters. The linear Savitzky-Golay filter is a convolution of the image with
the least-squares fitting of a polynomial. The basic Gaussian filter is a convolution with a Gaussian mask,
nonlinear adaptive filtering which filters the image but smooths less in areas of local discontinuities and
high spatial variance. Nonlinear diffusion, which again smooths with an exponential with no smoothing
occurring where the gradient has high values. Finally anisotropic Gaussian smoothing which uses a
scaled and shaped Gaussian mask to smooth along the direction of high gradients and never across the
gradients.

∗Corresponding author.E-mail address:lynchm@eeng.dcu.ie
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2 Savitzky-Golay Filter

The Savitzky-Golay [8] smoothing filter was introduced for smoothing data and for computing the nu-
merical derivatives. The smoothed points are found by replacing each data point with the value of its
fitted polynomial. The process of Savitzky-Golay is to find the coefficients of the polynomial which are
linear with respect to the data values. Therefore the problem is reduced to finding the coefficients for
fictitious data and applying this linear filter over the complete data. The size of the smoothing window
is given asN ×N whereN is odd, and the order of the polynomial to fit isk, whereN > k + 1.

f(xi, yi) = a00 + a10xi + a01yi + a20x
2
i + a11xiyi + a02y

2
i + .... + a0ky

k
i (1)

We then want to fit a polynomial of type in Eq. 1 to the data. Solving the least squares we can find
the polynomial coefficients. We start with the general equation,A · a = f , wherea is the vector of
polynomial coefficientsa = (a00 a01 a10 .... a0k)T We can then compute the coefficient matrix
as follows,(AT ·A) · a = (AT · f), which in least squares can be written asa = (AT ·A)−1 · (AT · f).

Due to the linear-squares fitting being linear to the values of the data, the coefficients can be computed
independent of data. The general coefficient matrix becomesC = (AT A)−1AT . C can then be reassem-
bled back into a traditional looking filter of sizeN ×N . In order to smooth the image the first coefficient
is used, higher order coefficients are used to calculate derivatives. The advantage of the Savitzky-Golay
filter has the ability to preserve higher moments in the data and thus reduce smoothing on peak heights.
In more homogeneous areas the smoothing approaches an average filter.

3 Adaptive Smoothing

The algorithm for adaptive smoothing implemented in this paper is adapted from Chen [5]. The technique
measures two types of discontinuities in the image, local and spatial. From both these measures a less
ambiguous smoothing solution is found. In short, the local discontinuities indicate the detailed local
structures while the contextual discontinuities show the important features.

In order to measure the local discontinuities for each pixel the average of the∇’s around the pixel
in the horizontal, vertical and diagonal is calculated to beExy. In order to measure the contextual
discontinuities, a spatial varianceσ2

xy(R) is employed in a square kernelNxy(R).
This value of sigma is then normalised toσ̃2

xy between the minimum and maximum variance in the en-
tire image. A transformation is then added intoσ̃2

xy to alleviate the influence of noise and trivial features.
It is given a threshold value ofθσ = (0 ≤ θσ ≤ 1) to limit the degree of contextual discontinuities.

Finally, the actual smoothing algorithm runs through the entire image updating each pixels intensity
valueIt

xy, wheret is the iteration value.

It+1
xy = It

xy + ηxy

Σ(i,j)∈Nxy(1)/{(x,y)}ηijγ
t
ij(I

t
i,j − It

x,y)
Σ(i,j)∈Nxy(1)/{(x,y)}ηijγt

ij

(2)

where,
ηij = exp(−αΦ(σ̃2

ij(R), θσ)), (3)

γt
ij = exp(−Et

ij/S) (4)

The variablesS andα determine to what extent the local and contextual discontinuities should be
preserved during smoothing. If there are a lot of contextual discontinuities in the image then the value
of ηij will have a large influence on the updated intensity value. On the other hand, if there are a lot of
local discontinuities then bothγij andηij will have the overriding effect, asηij is used for gain control
of the adaption.
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4 Nonlinear Diffusion Filtering

The standard blurring operation involving Gaussian filtering attempts to remove the noise at the expense
of poor edge preservation and is given as;

Sx,y = Ix,y ◦Gauss(x, y, σ) (5)

whereS is the filtered image,I is the input image,◦ implements the 2D convolution,Gauss() is the
2D Gaussian function whereσ is the scale parameter. The smoothing becomes more pronounced for
higher values of the scale parameter but we can notice a significant attenuation of the signal at image
boundaries. This result is highly undesirable for many applications like image segmentation and edge
tracking where a precise identification of object boundaries is required.

To alleviate the problems associated with the standard Gaussian smoothing technique, Perona and
Malik [3] proposed an elegant smoothing scheme based on non-linear diffusion. In their formulation the
blurring would be performed within homogeneous image regions with no interaction between adjacent
or neighbouring regions that share a common border. The non-linear diffusion procedure can be written
in terms of the derivative of the flux function,φ(∇I) = ∇I ·D(‖∇I‖), whereφ is the flux function,I is
the image andD is the diffusion function. This equation can be implemented in an iterative manner and
the expression required to implement the non-linear diffusion is illustrated in Eq. 6.

It+1
x,y = It

x,y + λ
4∑

R=1

[D(∇RI)∇RI]t (6)

whereIt represents the image at iterationt, R defines the 4-connected neighbourhood,D is the diffusion
function,∇ is the gradient operator that has been implemented as the 4 connected nearest-neighbour
differences andλ is a parameter that takes a values in the range0 < λ < 0.25 .

The diffusion functionD(x) should be bounded between 0 and 1 and should have the peak value
when the inputx is set to zero. This would translate with no smoothing around the region boundary
where the gradient has high values. In practice, a large number of functions can be implemented to
satisfy this requirement and in our implementation we were using the exponential function proposed

by Perona and Malik [3],D(‖∇I‖) = e−(
‖∇I‖

k
)2 ,wherek is the diffusion parameter. The parameterk

selects the smoothness level and the smoothing effect is more noticeable for high values ofk.

5 Anisotropic Gaussian Smoothing

An anisotropic filter based on the familiar Gaussian model was implemented in order to provide edge en-
hancing, directional smoothing. The goal was to develop a versatile smoothing filter based on a straight-
forward and highly adaptable form. The approach reduces to convolution with a scaled and shaped
Gaussian mask, where the determination of the mask weights becomes the key step governing the per-
formance of the filter. By calculating the local greyscale gradient vector and favouring smoothing along
the edge over smoothing across it we can achieve an effective boundary preserving filtering approach,
where regions are homogenized while edges are retained.

The weightwt( ~pq,∇u) at each location in the mask is a function of the local gradient vector at the
centre of the mask and the distance of the current neighbour from that centre. There is a large number
of possibilities for the formulation of the mask weight calculation, based on the desired form for the
non-linear and anisotropic components of the filter. The weight for some neighbourq is calculated as a
function of the gradient of pointp, at the mask origin, and the distance from the origin to the neighbourq.
The relationship used in our approach is given in Eq. 7, where~pq is the vector from the mask centre point
p to some neighbourq, ∇u is the gradient vector atp, λ is the scale parameter, controlling smoothing
strength, andµ is the shape parameter, controlling anisotropy. Whenµ equals zero the anisotropic term
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( ~pq·∇u
λ )2(2µ + µ2) disappears and the filter reduces to the non-linear, isotropic form, where smoothing

decreases close to strong edges but is applied equally in all directions, at any given location in the image.

wt( ~pq,∇u) = e−((
‖ ~pq‖‖∇u‖

λ
)2+( ~pq·∇u

λ
)2(2µ+µ2)) (7)

The images in Figures 1 and 2 illustrate the operation of the anisotropic filter. As the smoothing
strength and the number of iterations is increased more noise and small features are eliminated, but even
in extreme cases the most important edges in the image are well preserved in both location and strength.

6 Experiments and Results

The results of each filter are assessed by their ability to smooth homogeneous areas while preserving the
areas with higher moments. Smoothing of homogeneous areas is measured using the standard deviation
while the preservation of edges is measured using the strength and spread of the edge in the filtered
images. The filters are tested on two images, see figures 1 and 2, the first image of a laboratory having a
high SNR (signal-noise-ratio) and high CNR (contrast-to-noise-ratio) with a high density of edges. The
second medical image has a much lower SNR and CNR. Parameters were chosen to give the optimal
results on visual inspection. Visual results are presented in figures 1 and 2. The standard deviation is

Figure 1: Results from each of the smoothing filters, top-row, l-to-r is the original image, image after
Savitzty-Golay and Gaussian. Bottom-row, Adaptive, Nonlinear Diffusion and Aniostropic Gaussian.

measured in a7× 7 window over the entire original image. From these values 25% of the highest values
were eliminated as belonging to edges in the image and 25% of the lower values as having no significant
texture to smooth. The standard deviation for each of the filtered images is then taken at the same
positions. The results are presented in Table 1. For the laboratory image, Adaptive smoothing gives the
best results followed by the two other non-linear filters. Both linear Savitzky-Golay and Gaussian filters
have the highest deviation after smoothing. In the medical image there are more significant differences
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Laboratory Image MR Image

SD Edge height Edge width SD Edge height Edge width

Original 57.4 31 2.26 277.7 219 2.04
Savitzky-Golay 40.8 23 2.5 61.23 158 2.48

Gaussian 41.0 15 4.4 102.8 196 2.16
Adaptive 24.2 26 2.13 42.99 211 2.00
Diffusion 27.7 25 2.17 69.63 214 2.00

Anisotropic 31.9 30 2.17 35.05 219 1.99

Table 1: Shows the standard deviation (SD), edge strength and edge spread on both images after each
filtering. The edge strength and edge spread are taken from histograms in figure 3.

with the anisotropic and adaptive smoothing operators giving the best results while the Gaussian performs
worst in the low SNR image.

Figure 2: Results from each of the smoothing filters, top-row, l-to-r is the original image, image after
Savitzty-Golay and Gaussian. Bottom-row, Adaptive, Nonlinear Diffusion and Anisotropic Gaussian.

The strength, shift and spread of the edge is evaluated on each of the images. Histogram plots across
two edges are shown in figure 3 showing both the image pixels and the gradient across the edge. For
the lab image the results are similar for all filters with more significant differences between filters in the
medical image. Two measurements are taken from these histograms which indicate edge strength and
spread. These results are compiled in Table 1. While Savitzky-Golay and Gaussian filters spread the
edge, the other three maintain and even enhance the edge characteristics.

7 Conclusion

Five filters were evaluated using two criteria, texture smoothing and edge preservation. The filters con-
sisted of two linear filters, two non-linear isotropic and one non-linear anisotropic. The filters were tested
on two images with high and low SNR and the results show that, particularly in the low SNR case, the
anisotropic and adaptive filters performs much better than the linear filters at smoothing out the noise in
homogeneous areas while still maintaining the edge strengths with minimum blurring across the edge.

The Gaussian performs the worst of all the filters. The Savitzky-Golay deals better at preserving the
edges but again suffers in the lower SNR image. The anisotropic and adaptive smoothings preservation
of edges allows for more agressive smoothing on homogeneous areas.
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Figure 3: Pixel intensities and gradients along white lines from imagesfigure 1(a)andfigure 2(a). (i)
and(iii) show the pixel intensities and(ii) and(iv) show the gradient values from the lab image and the
medical image respectively.(a) is the original image,(b) image after Savitzty-Golay,(c) Gaussian,(d)
Adaptive,(e)Nonlinear Diffusion and(f) Anisotropic Gaussian.
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Abstract

This paper introduces a new technique for calibration of cameras which have lenses with small
depth of field. Standard coplanar calibration algorithms fail if the coplanar target is parallel to the
image plane. Elements of the rotation matrix which are used to calculate the focal length,F and the
distance from the origin of the world coordinate system to the camera coordinate system,Tz become
0 and it is only possible to calcualte the quotientF/Tz. By combining a traditional calibration al-
gorithm with a ’Depth from Defocus’ algorithm, the distance to the world coordinate system can be
calculated.
Keywords: Coplanar camera calibration, Depth from defocus, Parallel calibration, Telecentric cal-
ibration

1 Introduction

Camera calibration is the process of determining the internal and external parameters of the camera so
that the location of the objects observed by the camera can be determined. This is necessary in many
applications such as stereoscopic depth recovery. The external parameters are:

• t, the translation vector containing the translations along the X, Y, and Z axes from the origin of
the world coordinate system to the origin of the camera coordinate system

• ω, φ and κ, the angles of rotation of the world coordinate system axes relative to the camera
coordinate system which are used to form an orthonormal 3x3 rotation matrix,R.

The internal parameters includeF , the focal length of the camera,P , the principle point of the optical
system and other parameters which represent lens distortions such as barrel and radial distortion. This
paper is concerned with calculating the external parameters and assumes that the internal parameters
have been previously calculated.

Coplanar calibration is the process of finding the parameters using a series of world and image points,
the world points lying on a two-dimensional plane in three dimensional space. For noncoplanar calibra-
tion, the collinearity condtion equations provide a set of six constraints which can be used to calculate
the parameters. If the lens has a small depth of field, rotating the target relative to the image plane will
result in a blurred image. Extracting accurate geometry from a blurred image is not possible so the target
and image plane must be parallel which requires a setup like that shown in figure (1).

Parallel calibration is a problem which is encountered in many inspection tasks such as automated
optical inspection (AOI). AOI covers many inspection tasks such as the inspection of PCBs. In PCB
inspection, the height of the chips on the board is negligible relative to the size of the chips. Telecentric
lenses are used in many machine vision inspection systems. Telecentric lenses virtually remove perspec-
tive error because all of the rays intersect the image plane at900. This does not increase the depth of
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field, it just ensures constant magnification across the depth of field. This simplifies the inspection task
but makes the calibration harder.

Figure 1: Camera and target al-
lignment

The parallel constraint of the target and image plane complicates
the calibration process. For coplanar calibration it is recommended
that the target be tilted by at least300 relative to the image plane,
[9]. If the target is rotated by a small amount, then the bottom row
of the rotation matrix will become 0 (or very close to 0). The rotation
matrix is created by multiplying the three matrices corresponding to
rotation about theX, Y andZ axes (Rx, Ry andRz respectively).
If the rotation about theX andY axes are almost 0,Rx andRy
will be very close to the identity matrix. Irrespective of the rotation
about theZ axis,κ, the values on the bottom of the rotation matrix,
R, will consist of0, 0 and1 if there is no rotation relative to theX
andY axes.

R =

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 cos(κ) sin(κ) 0
−sin(κ) cos(κ) 0

0 0 1

 (1)

Because these elements in the rotation matrix are 0 the number of constraints which can be used to
calculate the parameters is reduced to 3 [1]. Therefore it is not possible to calculate a unique value of
F andTz, only the quotientF/Tz [1]. In their comparison of coplanar calibrarion algorithms, Chatterjee
and Roychowdhury, [1], ignore all cases when the rotation relative to thex andy axes is0 becauseF
andTzcannot be solved individually.

There are many algorithms which can accuratly calibrate cameras using noncoplanar techniques. Sev-
eral of these such as Ganapathy [3] and Grosky et al [4] can be extended to the solve the coplanar case.
These algorithms are extended by transforming the collinearity equations so the parameters can be esti-
mated using linear equations [1]. Neither pure coplanar calibration algorithms or these algorithms when
extended to the coplanar case can calibrate the camera when the target is parallel to the image plane. The
methods above along with Tsai, [7], and others use elements of the rotation matrix as a denominator to
calculateF andTz. If the target is coplanar with no tilt relative to the image plane, the denominator of
the equations used to solve forF andTz reduces toTz, eq(3)

Not only does the calculation ofF andTz cause problems, but sometimes these algorithms do not
calculate enough parameters. Many lenses have a variable distance from the image plane to the optical
centre of the lens. If this value is not calculated the accuracy of the calibration technique cannot be
calculated. To check the accuracy of the algorithm, points are transformed through the rotation and
translation matrices. These image points should map to the scene points. If the image plane distance is
assumed to be the same length as the focal length then this will not be the case.

In this paper we introduce a new algorithm to calculateTz which will also calculate the distance from
the centre of projection to the image plane. In [6], Pentland describes a technique which uses the amount
of blur in an image to calculate the depth. He suggests that the distance to an object can be calcualted
if the other parameters of the camera such as focal length and aperture are known. Using this equation
in an optimisation search, both the distance to the object and the distance to the image plane can be
calculated. By combining this method of calculatingTzand image distance with an established method
for calculating translations parallel to the image plane and the rotation matrix we present an accurate
method for calibrating cameras with small depths of field.

2 Tsai’s calibration algorithm

Tsai’s algorithm, which is one of the most widely used camera calibration algorithms, is a very fast and
accurate algorithm. Unfortunatly it cannot calibrate a camera if the image plane and image sensor are
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parallel. The algorithm begins by calculating initial estimates of as many internal and external parameters
as possible using linear least squares fitting methods. Using nonlinear optimisation methods any unsolved
parameters are then solved, and the initial parameters improved. The initial parameters calculated include
both internal and external parameters of the camera and this is accomplished in two steps. The first is to
calculate the rotation matrix,R and two of the translation parameters,Tx andTy. When these have been
calculated,F andTz are then solved. However, when calibrating a system where the target is parallel to
the image plane the algorithm fails during this step.

Horn, [5], shows that the correspondence between the individual points can be expressed as:

xi

F
=

r11xS + r12yS + r13zS + Tx

r31xS + r32yS + r33zS + Tz

yi

F
=

r21xS + r22yS + r23zS + Ty

r31xS + r32yS + r33zS + Tz
(2)

Because there is no rotation of the target away from the image plane, the values ofr31, r32, r13 and
r23 calculated in the first step are zero. The value ofzS , the height of the target relative to theZw plane
is also 0 because the target is coplanar. Due to the large number of zero valued terms in equations (2) the
right hand side of both equations become 0, and so the equations become linearly dependent andF and
Tzcannot be solved uniquely. Rearranging equations (2)

F

Tz
=

xi

r11xS + r12yS + Tx

F

Tz
=

yi

r21xS + r22yS + Ty
(3)

BecauseF andTz are not expressed independently of each other they cannot be individually solved
so another method is required to calculate these parameters.

3 Depth from defocus

In 1987, Pentland [6] described a new method for calculating the depth in an image. He suggests that
the distance to an object,D, (which [7] callsTz), is related to the focal length,F, image distancev0, the
f-number of the system,f, and the spatial constant of the point spread function (radius of the blur circle),
σ.

D =
F ∗ v0

v0− F − σ ∗ f
(4)

When a point object is observed by a camera focused at a different depth, the image is a blurred circle.
The point spread function (PSF) is the function which transforms the point object to the blurred circle
observed by the camera, and the blur circle is the radius of the circle observed by the camera. The PSF for
cameras is modelled by Pentland as a two-dimensional Gaussian function, G(r, σ), wherer is the radial
distance of the function. An unfocused image is therefore the convolution of a 2D Gaussian function
(with appropriater andσ) with the focused image.

In his equation, Pentland assumes that all the variables exceptD andσ are known. Calculation ofD
is trivial after calculatingσ. Unfortunatly, the measurement ofσ is not trivial as it depends on both the
characteristics of the scene and the characteristics of the camera. In order to separate the two, Pentland
suggests using areas in the scene where characteristics are known. Such areas are places where edges
and sharp discontinuities can be observed.

3.1 Calculatingσ

The relationship between a focused image, unfocused image and the PSF (defocus operator) is expressed
by Ens and Lawrence in equation (19) of [2]:

I2 = I1[⊗]D (5)
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[⊗] represents bounded convolution, where the convolution kernel does not pass outside of the bound-
ary of the image.

Using this relationship we can calculate the defocus operator which relates the focused and unfocused
images. By convolving the focused image with Gaussian functions of increasing values ofσ, a value of
σ will be reached which results in a very close approximation of the unfocused image being produced.
In order to reduce the amount of time taken to find the value ofσ, convolution can be done in one
dimensional space rather than two dimensional space. By extracting rows with sharp discontinuities
from the focused image, convolving them with one dimensional Gaussian functions of varyingσ and
comparing them to the unfocused image, it is possible to reach the correct value ofσ much quicker.

The unfocused image is at a known distance,δ, from the position of best focus. In order to increase
the accuracy of the the calculation, values ofσ for several known distances from focus are calculated, so
D andσ are replaced withD + δi andσi.

D + δi =
F ∗ v0

v0− F − σi ∗ f
(6)

3.2 CalculatingD and v0

The values ofσ calculated in the previous section are at known distances from focus, not at the point
of focus. To calculate the values ofD andv0 it is necessary to change the equation slightly. If all the
parameters in equation (4) are exact, then rearranging (4) should give a result of 0:

0 =
F ∗ v0

v0− F − σ ∗ f
−D (7)

Although values ofσ have been calculated, none of these values are the value at focus,D. To calculate
the value ofD andv0, the equation can be used in an optimisation search to iterate through values for
these variables. When these values are correct, the error from equation (8) will be at its lowest.

Error =
∑

1≤i≤n

F ∗ v0
v0− F − σi ∗ f

− (D + δi) (8)

3.3 Combining with Tsai

Thus far we have calculated the values forD andv0. However, to accuratly calibrate a camera several
other external parameters are required, these areTx, Ty and the rotation matrix,R. To calculate these
parameters it will be necessary to combine our algorithm with an existing algorithm. Tsai’s algorithm,
[7], was the algorithm that was initially chosen to calibrate the camera. As shown earlier, it was not
possible to use this algorithm to completly calibrate the camera. However the algorithm calculates the
focal length and object distance after calculating the rotation matrix and the translations parallel to the
X andY axis. Because of the order in which the parameters are calcualted, the values ofR, Tx andTy
calculated are the values which relate the camera and world coordinate system axes.

4 Evaluation

The above algorithm is tested with two sets of real data obtained from our vision system. The accuracy is
checked in two ways. If the camera is calibrated correctly, a ray projected from the image plane through
the center of the optical system into the world coordinate system should intersect with the corresponding
point on the target. The first check was to calculate the closest distance from each point on the target
to the corresponding ray projected from the image plane. The second was to calculate the Euclidian
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distance between the point on the target and the(x, y) value of the ray where it intersects the plane of
the calibration target.

The target was a series of white squares on a black background. The squares, each of side 50 dots,
were created using a PostScript file and printed on100g/m2 paper using a PostScript printer of resolution
600dpi. Figure (2) shows the target along with sample images taken at various distances from defocus.

(a) Target
at focus

(b) 4mm
from focus

(c) 7mm
from focus

Figure 2: Calibration target, and target at
various distances from focus

The optical system is a PULNiX TM1001 CCD camera
with a Computar 55mm Telecentric lens attached.

The first step is to calculate the sigmas for the images.
Rows from the focused image were convolved with Gaus-
sian functions of increasing sigma and the result com-
pared to the corresponding row of the unfocused image.
The values ofσ were increased by .0001 each iteration.
The value of the radial distance was chosen so there were
no non 0 values truncated from the function, even at the
largest usedσ. Figure (3) show the graphs ofσ against
distance from focus. As these graphs show, the values of
σ increase almost linearly as the distance from focus in-
creases. Figure (4) shows the derivative ofσ with respect
to the distance from focus.

In each case, the values ofσ and the corresponding distances from focus are used in equation (8).
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Figure 3: Sigmas vs Distance from focus

Finding the exact centre of the opti-
cal system is difficult when a compound
lens is used. The values ofD andv0 re-
turned from the minimisation search were
measured against the distance from the fo-
cused position to the location of sensor
and found to be within 1mm.

The values ofR, Tx andTy were ob-
tained in each case from Reg Wilson’s
implementation of the Tsai algorithm [8].
These values were as accurate as could be
measured. The number of squares visible
on the target was known so the translation
from camera to world coordinate system
could be measured very accurately.

The table below shows the errors which
were calculated from projecting the rays

from the image plane into the real world. Method 1 refers to the distance from each point to the ray
projected from the target, while method 2 refers to the distance from the point to the intersection of the
corresponding ray and the target plane.

Set (method) 1 (1) 1 (2) 2 (1) 2 (2)
Min error (mm) 0.0203 0.1899 0.0077 0.0109
Max error (mm) 0.4965 0.5038 0.4513 0.4642
Std 0.1195 0.1272 0.1162 0.1136

There are several reasons why the accuracy of this method is not as good as it could be. The
centre of the optical system may not be the centre of the lens unit as was presumed when perform-
ing the experiments because it consists of many internal lenses. The position chosen as the posi-
tion of focus may not be the position of best focus. When selecting the position of best focus, a
continuous feed from the camera is observed. The position selected as the position of best focus is
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subjective and could be incorrect. The internal parameters of the lens dealing with distortion and
the center of the CCD were not calculated, so this will also reduce the accuracy of the experiment.
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Figure 4: Derivative of sigma vs distance graphs

5 Conclusions

This task was undertaken because none
of the existing camera calibration algo-
rithms could calibrate a camera with a
small depth of field lens attached. The
problems that existing calibration tech-
niques encountered was due to a lack of
perspective. All that is known is a ratio
of the image and object sizes. Because
the section of this algorithm which cal-
cualtes the distance to the object relies on
the blur in the object it does not encounter
the same problems and therefore it can
be used to calibrate a camera with small
depth of field lens attached.
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Abstract

This paper proposes a framework for colour texture segmentation. The framework uses the colour
and the texture distributions for discriminating the colour textured regions. The proposed colour
texture segmentation method was tested in three different applications. The applications includes
Irish Script on Screen (ISOS) images, skin cancer images and Sediment Profile Imagery (SPI). Image
textures are used in combination with colour features for the segmentation of the colour textured
regions in the document, to identify the diseased area in the skin cancer images and to segment
underwater images. The inclusion of colour and texture as distributions of regions provide a good
discrimination of the colour and the texture. The experimental results proved that the framework is
effective and efficient.
Keywords: Colour, Texture, ISOS Images, Skin Cancer Images, SPI Images

1 Introduction

Colour and texture are important features in image segmentation. This paper developed a novel frame-
work which considers the distributions of colour and the distributions of texture to discriminate the colour
textured regions. Researchers have developed different frameworks for colour texture segmentation and
most of them are designed for a specific application. Jolly et al.[5] proposed an algorithm for colour
texture segmentation that was applied to update old cartographic aerial maps. Song et al. [9] proposed a
method that uses colour and texture to detect defects in random colour textured images and in particular,
granite images. Kyllonen et al. [6] described a wood surface inspection method that combines colour
percentile features with texture features based on simple spatial operators.
An application independent colour texture method is proposed in this paper. The framework covers ap-
plications from different fields. Three different applications from three different areas were selected for
testing the developed framework. The applications discussed in this paper are ISOS images for the seg-
mentation of the color textured regions in the document, segmentation of skin cancer images to identify
the diseased area and SPI images to segment the underwater images. The images evaluated in this paper
are taken from different environments and the segmentation is found to be efficient.

∗Corresponding author
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2 Framework for Colour Texture Segmentation

2.1 Steps in Colour Texture Segmentation

A novel framework was developed for combining texture and colour information for colour texture seg-
mentation that makes the segmentation robust and efficient for different types of images. The steps are
as follows,

Figure 1: Framework for colour texture segmentation

• Initially the features were identified by means of feature extraction techniques, in which image
information is reduced to a small set of descriptive features. The Local Binary Pattern (LBP) and
the contrast features are extracted from the luminance plane.

• The distribution of the texture features are used for texture discrimination.

• A Modified-Kolmogorov Smirnov (M-KS) non-parametric statistical test is used as a similarity
measure to discriminate the texture distributions.

• A hierarchical splitting method is used to split the image based on the texture descriptors using the
similarity measure.

• An adaptive smoothing is performed to preserve the features and to obtain a good segmentation
along the boundaries. This technique removes noise and prevents over segmentation.
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• An unsupervised k-means clustering algorithm is performed on the image to classify the patterns
into their respective classes and to obtain the distribution of the colour clustered labels.

• Distribution of the texture features and the distribution of the colour clustered labels are used to
describe the texture and the colour respectively. The distributions of colour and the textures was
used to derive the merger importance (MI) value between two adjacent regions. The MI value was
calculated using the M-KS statistic. Two weights are computed to set the statistical relevance for
texture and colour distributions.

• An agglomerative merging procedure based on the merging criteria determines the similarity be-
tween two different regions using M-KS statistic, producing the segmented image.

• The final step is to refine the boundaries of the image. A boundary refinement algorithm enhances
the segmented result to obtain the final segmented image.

2.2 Details of Colour Texture Segmentation

2.2.1 Feature Distributions

Local Binary Pattern (LBP) approach provides robust texture related information and knowledge about
the spatial structure of the local image texture. LBP is combined with the contrast of the texture which
is a measure of local variations present in an image for the texture description. The distributions of LBP
and contrast (256 ∗ 8) were used for texture description.
The proposed method uses the unsupervised clustering technique based on the k-means algorithm to
cluster the colour features. The k-means algorithm [4] is the simplest and most popular technique among
the iterative clustering algorithms. The k-means algorithm organises the objects into an efficient rep-
resentation that characterises the population being sampled. The number of clusters is generally image
dependent so the initial value is set to 10 clusters, this number is sufficient to capture all the relevant
clusters. The distribution of the colour clusters is used for colour description.

2.2.2 Modified Kolmogorov Smirnov (M-KS)

A non-parametric test M-KS statistic was used for comparing LBP/C with colour clustered labels. This
tests the hypothesis that two empirical feature distributions have been generated from the same popula-
tion. M-KS has the desirable property that it is invariant to arbitrary monotonic feature transformations
[8]. The M-KS statistic is defined as the sum of the absolute value of the discrepancies between the
normalised cumulative distributions,

D(s, m) =
∑

i

∣

∣

∣

∣

∣

Fs(i)

ns

−
Fm(i)

nm

∣

∣

∣

∣

∣

(1)

where Fs(i) and Fm(i) represent the sample cumulative distribution functions; ns and nm represent
the number of pixels in the sample and model regions respectively. Since M-KS is normalised, it is
advantageous over other statistical measures.

2.2.3 Segmentation Method

The unsupervised colour texture segmentation method involves three steps: hierarchical splitting, ag-
glomerative merging and the boundary refinement.
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Hierarchical Splitting The hierarchical splitting procedure recursively splits the input image into four
subblocks. The six pairwise M-KS values between the LBP/C of the 4 subblocks are calculated. The
uniformity of the region is tested by a decision factor

R =
MKSmax

MKSmin

> X (2)

where X is a threshold value, MKSmax and MKSmin represents the highest and the lowest M-KS
values.

Agglomerative Merging An agglomerative merging procedure was applied on the image which has
been split into blocks of roughly uniform textures. This procedure merges similar adjacent regions until
a stopping rule is satisfied. The pair of adjacent segments which has the smallest Merger Importance
(MI) value were merged. The MI value between two regions is calculated as followed,

MI = w1 ∗ MKS1 + w2 ∗ MKS2 (3)

where w1 and w2 represent the weights for the LBP histogram and the colour clustered histogram respec-
tively. MKS1 and MKS2 represents the M-KS statistic for texture and colour histograms respectively.
The weights are automatically detected using an uniformity factor defined as the maximum of the ratio
between colour clustered histogram and number of pixels in the two regions under consideration, the
sample and the model regions.

kj = max

{

CLj [i]

Np

}

(4)

where kj represents the uniformity factor for the two sample regions. If the difference between k1

and k2 is less than 0.1, i.e., both the sample and the model weights are more or less the same, then
w2 = (k1 + k2)/2 and w1 = 1 − w2. This indicates that colour influences more than texture, hence
colour statistic is given more importance. On the other hand, if the difference between k1 and k2 is high,
both the texture and the colour are given equal weights. Details about the colour and texture weights
can be found in [7]. The developed method follow a simple stopping rule, MinMI > Y , where MinMI
represents the minimum merger importance value. If this is greater than a threshold value then the
merging procedure is halted.

Boundary Refinement The agglomerative merging procedure resulted in blocky segmented image.
A new boundary refinement algorithm was developed and used for the improvement at the boundaries
between various regions. A pixel is regarded as a boundary point if its region label is different from at
least one of its four neighbours. For an examined point P, a discrete square with a dimension d around
the pixel was placed and the colour histogram for this region was computed. The corresponding colour
histograms for the different neighbouring points were calculated. The homogeneity of the square region
and the ith neighbouring region, i=1,2,...l...n region was computed. The pixel is reclassified if the MI
value between adjacent regions and the region around the pixel under consideration is lower than the
merge threshold. This procedure is iterative and proceeds until no pixels are relabelled. Reassigning
pixels in this way significantly improves the accuracy of the segmentation process.

3 Applications and Evaluation

The developed framework can be applied to a number of different applications. Three out of a number
of possible applications were selected and presented in this paper. The applications for colour texture
segmentation include the segmentation of colour textured regions in Irish manuscript document, disease
detection, and the segmentation of underwater images. Application database consists of the Irish Script
On Screen (ISOS) images, skin cancer images and the Sediment Profile Imagery (SPI). The following
sections presents the segmented results and the salient features of the segmentation.
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3.1 Irish Script on Screen Images

The ISOS images are digital images of Irish manuscripts. The sample images were taken from old Irish
manuscripts online - Irish Script On Screen (See: http://www.isos.dcu.ie/). About 5,000 early Irish lan-
guage manuscripts survive and those appearing on this website form an important and distinctive part
of Irish heritage. This includes the Book of Leinster, which is compiled in the second half of the 12th
century. The storage of letters, papers or other documents in ordinary stationery-grade folders or plastic
sleeves invites certain deterioration even when kept in sealed containers. Slowly but inexorably, paper
degrades and discolors, and ink fades. High heat and humidity are also detrimental. Most papers contain
acid which over time will cause the paper to weaken and become brittle. A historic document which
would otherwise appreciate greatly as a prime investment is debased in value. In addition, the corrosive
effects of modern environment and time is a threat to document preservation. The objective of ISOS is

(1) (2) (3) (4)

Figure 2: (1 - 4) represents segmented results of ISOS images after the boundary refinement stage

to create digital images of Irish manuscripts, and to make these images available together with relevant
commentary, accessible on a website. The ISOS images are available in joint photographic experts group
(jpeg) format. The ability to segment a document into functionally different parts has been an ongoing
goal of segmentation of the document analysis research. Segmentation of the old document images helps
to determine the amount of damage in the document, caused by the afore-mentioned factors. This en-
compasses decomposing a document into its various corrupted components. This provides information
on the amount of care to be taken to preserve the document from further damage. Four ISOS images
were considered as the application database.
Figure 2-(1) illustrates the correct identification of the stained regions on the script images. A small por-
tion of the green region is identified. Figure 2-(2) shows the tarnished region. Figure 2-(3) demonstrates
the segmentation of the soiled region and the unsoiled region. In addition, one large coloured script was
identified precisely. Figure 2-(4) categorises the discoloured and the blemished regions. Colour plays
a vital role in the developed framework which is evident from the presented results. Though the small
scripts were not segmented separately, the damaged region and the different colours in the script were
identified properly. The quantification of the segmentation of the ISOS images was based on the ground
truth images. A boundary was drawn around the stained regions in the image and these regions were
considered as the ground truth for quantification. The average segmentation error for four script images
was found to be 2.6 percentage.

3.2 Skin Cancer Images

Skin cancer is the most prevalent form of human cancer that is generally caused by over exposure to sun.
There are different types of skin cancer and some are likely to be fatal. Skin cancers can be classified
into melanoma and non-melanoma. Melanoma is the most dangerous form of skin cancer. It can spread
through the whole body and is usually fatal if it does. If detected early, the cure rate for melanoma is
almost 100 percent. Late detection, when the melanoma is more than three millimeters deep, results
in only a 59 percent survival rate. Melanoma’s are much less common than non-melanoma’s, but they
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account for most of the mortality from skin cancers. Detection of malignant melanoma in its early stages
considerably reduces morbidity and mortality [10]. People are considered more at risk if they have many
moles, are fair skinned with blue eyes, tend to sunburn easily or have freckles [3]. The rate of melanoma
cases worldwide is increasing faster than any other cancer, with an annualised rate of increase of six
percent. Since 1973, the mortality for melanoma has increased by 50 percent.
Clinical features of pigmented lesions suggestive of skin cancer are known as the ABCD’s of the skin
cancer: asymmetry, border irregularity, colour variation, diameter greater than 6mm. There are various
image analysis techniques developed to measure these features. Measurement of image features for di-
agnosis of the skin cancer images requires the detection of the lesions and their localisation in an image.
It is essential to determine the lesion boundaries accurately so that the measurements such as maximum
diameter, irregularity of the boundary, and colour characteristics can be accurately computed. As a first

(1) (2) (3)

(4) (5)

Figure 3: (1 - 5) represents segmented results of skin cancer images after the boundary refinement stage

step in skin cancer identification, the lesion boundaries are delineated by various image segmentation
techniques. In this research work, colour and texture information from an image is used for the segmen-
tation of the lesion boundaries. The segmentation helps to diagnose the skin lesions in the early stages.
The skin cancer images obtained were in graphics interchange format (gif). Five skin cancer images
considered for the application database were taken from the [2].
The skin lesions have complex structure, colour as well as large variations in size. Generally, the lesions
have a high contrast with respect to healthy skin areas. The borders of lesions are not always well defined
which makes the segmentation more complex. To analyse skin lesions, it is necessary to accurately locate
and isolate the lesions. The efficient performance of the proposed colour texture segmentation method
exactly recognised the boundaries in the skin lesions as shown in Figure 3.
Colour is one of the significant feature in the examination of a skin lesion. Typical examples of lesions
show reddish, bluish, grey and black areas and spots. Figure 3-(1), shows the segmentation of the skin
lesion. The fine variation in the colour is identified and segmented accurately. Figure 3-(2), Figure 3-(3),
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Figure 3-(4) and Figure 3-(5), illustrates the segmented results of the skin lesion. This segmentation
clearly identifies the difference in colours in the skin lesion. The distribution of texture and colour fea-
tures presents significant information, hence the segmentation based on the two features seems to be
appropriate. This allows for the isolation of the lesion from healthy skin and extracts homogeneous
coloured regions separately. The quantification of the skin lesion segmentation was based on visual re-
sults. The experimental results obtained proved to be encouraging and indicate that this method of colour
texture segmentation is appropriate to be applied for detection of skin cancer images. Further evaluations
on the segmentation can only be performed by an experienced dermatologist.

3.3 Sediment Profile Imagery

Sediment Profile Imagery (SPI) is a remote sensing technique that is used to determine whether the
marine sediments provide suitable habitat for bottom dwelling fauna. This is an innovative and cost effi-
cient method of surveying and monitoring lake or marine aquatic environments. The traditional method
of sample collection and subsequent laboratory analysis is time consuming and expensive and data return
time is slow. SPI is based on single lens reflex (SLR) camera photography and computer-based image
analysis which greatly accelerates the time required to write reports and provide relevant data. The phys-
ical, chemical and biological features associated with organic enrichment of the underwater sediment are
imaged and measured with the SPI system. The segmentation of the SPI images is the preliminary step in
most pictorial pattern recognition and scene analysis problems. These images are hard to process due to

(1) (2)

Figure 4: (1) and (2) represents segmented results of SPI images after the boundary refinement stage

the light absorption, changing image radiance and lack of well defined features. The underwater images
shows fluctuating oxygenation levels under different organic loading and hydrographic conditions.
Figure 4-(1) shows an example of a sediment image under high organic loading stress in hypoxic condi-
tions. This is an example of a heavily impacted sediment. There is a clear difference in colour between
the sediment surface layer and that lying under it. The colour texture segmentation clearly identifies
different layers. Figure 4-(2) represents the sediment image with burrowing marine worms. The oppor-
tunistic worms thrive in high organic loading conditions and their burrowing action can often reintroduce
oxygen into depleted sediments. Due to the thin feature difference in the organic sediment and the worm,
the colour texture distribution could not identify the worm separately. But the sediments were segmented
accurately. The results were compared with the results obtained by Ghita et al. [1] and found to be
similar. The segmented result indicates that the developed framework for colour texture segmentation is
able to identify the different sediment layers in the image.

4 Conclusions

The goal of this paper is to find the performance of the developed colour texture segmentation method
in the script images, skin cancer images and underwater images. The proposed algorithm, was tested
in three different applications, ISOS script images, skin cancer images and the underwater images. The

141



REFERENCES Padmapriya Nammalwar et al

algorithm was applied on the images and was found to produce proper segmentation results. All these
applications use different images taken from different cameras and varying environment. In spite of these
differences, the proposed colour texture segmentation method is able to identify different colour textured
regions in the image and the results of the segmentation process are appropriate and visually acceptable.
In all the three applications, colour is a determinant factor in the segmentation process.
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Abstract

The single cell gel electrophoresis, calledcomet assay, is a microelectrophoretic technique of di-
rect visualization of the DNA damage at the cell level. In the comet assay, the cells suspended in an
agarose gel on a microscope slide are subjected to lysis, unwinding of DNA and electrophoresis. Af-
ter staining with fluorescent DNA binding dye, cells with DNA damage display increased migration
of genetic material from the cell nucleus. Under the influence of weak, static electric field, charged
DNA migrates away from the nucleus, forming the so called comet. The damage is quantified by
measuring the amount of the genetic material, that migrates from the nucleus to form the comet tail.
The foremost advantage of the comet assay is that it analyzes individual cells, thus allowing the mea-
surement of the heterogeneity of response within a cell population. In this paper we present three
novel methods of the comet tail and head extraction, that allow to quantify the cell’s damage.
Keywords: image enhancement, comet assay, biomedical image processing

1 Introduction
The comet assay, (single cell gel electrophoresis, SCGE or microgel electrophoresis, MGE) is a useful
method for quantifying the cellular DNA damage caused by different genotoxic agents. The idea of
single cell electrophoresis as a method of measurement of the DNA damage was introduced by Rydberg
and Johanson, [1] and the comet assay was introduced byÖstling and Johanson, [2].

The assay was named for the characteristic shape of the DNA, flowing from the nucleus and migrating
under the influence of applied static electric field, (see Figs. 1, 2). The measurement of the DNA in the
comet’s tail enables to quantify the intensity of the DNA damage caused by various genotoxic agents. The
information about the comets’ tail and head boundaries, enables different calculations of the distribution
of the DNA, that escaped from the cell nucleus.

In the recent years the use of the comet assay has grown considerably, as this method detects damages
with high sensitivity and it is relatively fast and reliable. As a result, this method of detection of the DNA
strand breaks on the individual cell level is now in wide use in genetic toxicology and oncology.

One of the application of the assay is the analysis of the effects of the ionizing radiation, [3–5] on the
DNA structure. The formation of a comet may be a result of the DNA single strand breaks (SSB), double
strand breaks (DSB) and alkali labile sites. Using different assay pH conditions, allows the study of
either SSB or DSB. This ability of analyzing these two kinds of DNA damage is an important advantage
of the comet assay.

For the experiments, the peripheral blood lymphocytes were taken from patients before the beginning
of radiotherapy. Comet assay was performed according to Singh, [3] with some modifications described
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Figure 1: Typical comet assay images.

in [6]. The comets were observed using a fluorescence microscope at a 400-fold magnification and the
images were acquired using a 512x512, 256 gray-levels frame grabber and stored on a computer disk.
From the laboratory database, a collection of 30 digital comet images was prepared and all experiments
were performed on these picture set.

2 New Methods of Comet’s Tail Extraction
The currently applied techniques of the evaluation of the cell’s damage are mostly based on simple
thresholding, which has some severe disadvantages, as the global binarization is sensitive to noise and
changes of the background illumination. In this paper three novel methods, which enable better analysis
of the comet assay images are presented.

2.1 Probabilistic, Iterative Approach

The algorithm introduced here is based on a model of a virtual particle, which performs a random walk
on the image lattice. It is assumed, that the probability of a transition of the jumping particle from a
lattice point to a point belonging to its neighborhood is determined by a Gibbs distribution, defined on
the image lattice with the eight-neighborhood system, [7–9].

Using this model, the image is treated as a realization of a Markov random field and it is assumed
that the information on the local image properties is contained in the partition functionZ of the local
statistical system.

Let the image be represented by a matrixI of sizeNr, Nc, and let us introduce a virtual particle,
which can perform a random walk on the image lattice visiting its neighbors or staying at its temporary
position. In this work it is assumed, that the particle moves on the image lattice with the probabilities of
a transition from the point(i, j) to (k, l) derived from the Gibbs distribution formula

P {(i, j), (k, l)} =
exp{−β (I(i, j) − I(k, l) )}

Z(i, j)
, Z(i, j) =

∑
(m,n)⇔ (i,j)

exp {−β (I(i, j) − I(m,n) )} , (1)

where the symbol⇔ denotes the neighborhood relation,β plays the role of the inverse of temperature
of the statistical system andZ(i, j) is the partition function, (statistical sum) of the local structure,
I(i, j) ∈ [0, 1], i = 1, . . . Nr , j = 1, . . . Nc.
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a) b)

c) d)
Figure 2: Comet assay image(a) and its model(b), below the intensity-sliced image(c), and manually
determined boundary of the comet,(d).

Figure 3: Image segmentation using the probabilistic, iterative approach. The pictures show the evolution
of the test image, used for the comet’s segmentation, in successive iterations.

As we are interested in the statistical sumZ, which can serve as a measure of the pixel’s relation to
its neighbors, let us assume that the value of the pixel(i, j) is set to zero. Under this assumption

P ∗ {(i, j), (k, l)} =
exp{β I(k, l) }

Z∗(i, j)
, Z∗ =

∑
(m,n)⇔ (i,j)

exp {β I(m,n)}, I(i, j) = 0. (2)

The probability that the virtual particle will stay at its current position(i, j) with I(i, j) = 0 will not
escape from(i, j) is then given by

P ∗ {(i, j), (i, j)} =
1

Z∗(i, j)
=

[∑
(m,n)⇔ (i,j)

exp {β · I(m,n)}
]−1

, (3)

Assigning to each image point the probability that the randomly jumping particle will stay at its current
position leads to a map of probabilities, which can be treated as a new image. The successive iterations,
lead to a binary image consisting of the comet head and its tail, (see Figs. 3 and 7a).

It is worth noticing that the proposed iterative segmentation is insensitive to the noise contamination
and illumination conditions as shown in Figs. 4 and 5 respectively.
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Figure 4: Image segmentation results using the probabilistic, iterative approach. The comet assay image
was obtained under noisy conditions with increasing intensity.

2.2 Region Based Segmentation

In [10] an effective image segmentation method, which works without defining the seeds needed to start
the segmentation process, was proposed. This method, originally developed for the vector valued color
images, can be also applied for the segmentation of gray level images.

At the beginning of the algorithm, each pixel has its own label, (the image consists of one-pixel
regions). In the construction of the algorithm, the 4-neighborhood system was used to increase the
computational efficiency of the method. For the region growing process, the centroid linkage strategy
was applied. This strategy adds a pixel to a region if it is 4-connected and has a color or gray scale value
lying in a specified range around the mean value of an already constructed region.

After the inclusion of a new pixel, the region’s mean color value is being updated. For this updating,
recurrent scheme can be applied. In the first step of the algorithm, a simple raster scan of the image
pixels is employed: from left to right and from top to bottom. Next pass, in this two-stage method, starts
from the right bottom corner of the image. This pass permits additional merging of the adjacent regions,
which after the first pass, possess features satisfying a predefined homogeneity criterion.

During this merging process, each region with a number of pixels below a specified threshold is
merged into a region with a larger area, if the homogeneity criterion is fulfilled. After the merging, a
new mean color (intensity) of a region is calculated and the labels of pixels belonging to a region are
modified. The segmentation results are strongly determined by the design threshold, which defines the
homogeneity criterion.

The segmented image can be further post-processed by removing small regions that are usually not
significant in further stages of image processing. Their intensities are different from the intensity of the
object and its background. Post-processing needs additional third pass from the top left corner to the
bottom right corner, whose aim is to remove the regions, which consist of a number of pixels smaller
than a certain area threshold. During this algorithm step, small regions are merged with the neighboring
regions, which are closest in terms of a color or intensity distance.

The described region-based segmentation technique has been applied to the segmentation of gray level
comet assay images. As already mentioned, the segmentation technique works also for single channel
images. The only difference is that instead of the color distance between pixels in a specific color space,
the absolute difference of their gray scale values is used.
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Figure 5: Image segmentation results obtained using the probabilistic, iterative approach. The comet
assay image was obtained under conditions with increasing illumination intensity.

The results of the segmentation of comet assay images using the described technique are presented
in Fig. 7b). As can be seen this method detects well the comet head and tail. Of course the results are
slightly different from those delivered by the previous algorithm, however they correspond well with the
assessment of a human observer.

2.3 Active Contour Segmentation

In the past decades image segmentation has played an increasingly important role in medical imaging.
Image segmentation still remains a difficult task, due to tremendous variability of medical objects shapes
and the variations of image quality affected by different sources of noise and sampling artifacts. To
address these difficulties, deformable contours have been extensively studied and widely used in medical
image segmentation.

Deformable contours are curves defined within an image domain that can evolve under the influence
of internal and external forces. The internal forces, which are defined within the curve itself, are designed
to keep it smooth during deformations. They hold the curve together through elasticity forces and keep
it from too much bending through the bending forces, (see Fig. 6), [11–14].

The external forces, which are computed from the image data, are defined to move the model toward
an object boundary and attract the curve toward the desired object boundaries. The evolution of an active
contour can be described as a process of minimization of a functional representing the contour energy,
consisting of internal and potential energy terms.

The internal energy specifies the tension or the smoothness of the contour, whereas the potential energy
is defined over the image domain and has local minima at the image edges. A deformable contour is a
curveX(s) = {X(s), Y (s)} , s ∈ [0, 1], which evolves on the image domain to minimize the energy
functional

E (s) = Eint (X) + Epot (X) , where Eint (X) =
1
2

∫ 1

0
α (s)

∣∣∣∣∂ X
∂ s

∣∣∣∣ 2

+ β (s)
∣∣∣∣∂2 X
∂2 s

∣∣∣∣ 2

ds, (4)

is the internal energy.
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Figure 6: Test image and beside the result of the comet’s segmentation using the active contour approach.
Below the initial contour (thick line) and the contour evolution after 30 (left) and 70 (right) iterations.

The first-order derivative discourages stretching and makes the contour behave like an elastic string,
while the second order derivative discourages bending and makes the model to behave like a rigid rod.
The second term is the potential energy

Epot (X) =

1∫
0

P (X(s)) ds, (5)

where the potential functionP (x, y) is derived from the image data and takes smaller values at object
boundaries. IfI(x, y) denotes the gray level value at(x, y), then

P (x, y) = −w |∇ [Gσ (x, y) ∗ I (x, y)]|2 (6)

whereGσ(x, y) is a two-dimensional Gaussian,∗ denotes the convolution operation andw is a parameter.
The curve that minimizes the total energy must satisfy the Euler - Lagrange equation

∂

∂ s

(
α

∂ X

∂ s

)
− ∂ 2

∂ s 2

(
β

∂ 2X

∂ s2

)
−∇P (X) = 0. (7)

This equation says thatEint(X) + Epot(X) = 0, where the internal force is given byFpot =
−∇P (X). To find a solution of the energy minimization problem, the deformable contour is made
dynamic by treatingX(s) as a function of timeX(s, t). Then we have to solve

γ
∂ X

∂ t
=

∂

∂ s

(
α

∂ X

∂ s

)
− ∂ 2

∂ s 2

(
β

∂ 2X

∂ s2

)
−∇P (X) . (8)

When the solutionX(s, t) stabilizes, the left side of the above equation is 0 and we achieve a solution
of the total energy minimization. In practical applications special external forces, (damping force, multi-
scale potential force, pressure forces, distance potential force, dynamic distance force, interactive forces
etc.) can be added to the energy minimization scheme.

The results of the segmentation of comet assay images using the described active contour technique
are presented in Fig. 7c). In practical applications, the initial contour can be the rectangle placed at the
image boundaries.
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3 Conclusions
The single cell gel electrophoresis is a powerful tool that can indicate lesions in nucleus DNA caused by
various genotoxic agents. However, the lack of standardization is a serious obstacle for evaluating and
comparing results obtained in different laboratories. In this paper three novel methods of comet’s tail
and head extraction were proposed.

As can be seen the presented methods detect well the comet’s tail, despite the strong noise present
in the comet assay images. The results obtained using different algorithms are naturally not identical,
however they all correspond well with the assessment of experts. In the future work we will examine,
which of the proposed segmentation methods yields the best results in the practical evaluation of the
comet assay results.
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Abstract

This paper presents a novel approach to unsupervised segmentation and boundary detection of
digital images using an algorithm that utilizes the concept of information theory.Information Gain
is calculated locally, at a pixel level, resulting in a gain image where high gain occurs at contrasting
boundaries and zero gain within homogeneous regions. Subsequently, a multi-scale thresholding ap-
proach based on the gain image is used to obtain the optimal segmentation results. The segmentation
is guided by both local and global parametric constraints. Comparative evaluation on real and artifi-
cial images shows promising results.
Keywords: Segmentation, Computer Vision, Pattern Recognition, Information Theory

1 Introduction

Automated image segmentation is an important processing step with widespread applications in per-
forming computer vision tasks such as pattern recognition and image retrieval. Image segmentation
algorithms classify the picture elements of an image into different classes so that pixels corresponding
to an object of interest belong to the same class [7]. Approaches to carrying out automated segmentation
can be divided into two groups, namely supervised and unsupervised methods. Interpretation of objects
of interest is often application dependent and in case of supervised segmentation priori information is
used for image segmentation by incorporating properties of pixels in relation to its neighboring pixels.
Unsupervised approaches are undertaken when prior information of objects of interest is not available.
Given the importance of unsupervised image segmentation, various methods are reported in the litera-
ture. Some of the methods for carrying out unsupervised image segmentation include the Bayesian ap-
proach [1], Markov trees and complex wavelets [11], histogram clustering [9], neuro-fuzzy systems [8],
higher-order hidden Markov chains [3] and the use of information theory and entropy [12, 10].

The rest of the paper is organized as follows. In Sec. 2 three existing and novel segmentation ap-
proaches are described. A comparative study on real and artificial data is presented in Sec. 3. Conclu-
sions are provided in Sec. 4.

2 Segmentation methods

Image segmentation carried out by Deng and Manjunath [2], results in a J-image while the method
undertaken by Jing et. al. [5], gives an H-image. Our method introduces the concept of G-image, which
is based on information gain and forms the basis of the segmentation process. In addition, we include
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an edge-detection approach as described by Lindeberg [6]. It should be made clear that this method was
developed as an edge detector and was as such slightly different from the previous two and proposed
method which form the initial step in a segmentation process. However, as will be shown, there is also
similarity in the resulting images which is the main reason for including this edge detector.

2.1 J-Image [2]

A region growing method based on image quantization called JSEG is proposed in [2]. The image
pixels are first replaced by quantized values forming a class-map of the image where a criterion for good
segmentation is defined as in Eq. 3 . LetZ be the set of all image data points in the class-map. Let
z = (x, y), zεZ, andm be the mean of all data points. Suppose color has been quantized intoC levels,
thusZ is classified intoC classes,Zi, i = 1, ...C. Let mi be the mean of the image points in classZi.
Let

ST =
∑

zεZ

‖z −m‖2 (1)

and

SW =
C∑

i=1

∑

zεZi

‖z −mi‖2 (2)

A criterion for good segmentation is defined as

J =
(ST − SW )

SW
(3)

J is a measure of the distances between different classes over the distances between the members
within each classSW . This is similar to Fisher’s multi-class linear discriminant. Applying the criterion
to local windows in the class-map results in the J-image, in which high and low values correspond to
possible region boundaries and region centers. Finally, a region growing method is used to segment the
image based on the J-image.

2.2 H-Image [5]

Jing et. al. proposed a similar method to JSEG but with a simpler segmentation criteria, which could be
calculated directly from the original image instead of the class-map, and therefore no initial quantization
was required. To quantize the homogeneity of a pattern an H-image was derived with each pixel value
being replaced by the calculated H value. The pixels of an image were viewed as a set of spatial data
points located in a 2D plane with the top left corner being the origin. A pixel was denoted as(x, y) with
intensityI(x, y). P was a pattern to compute homogeneity and considered to be a square window of
width 2N + 1. If c = (xc, yc) be the center of the pattern with the intensity beingI(xc, yc) then each
pixel pi = (x, y), 1 ≤ i ≤ (2N + 1)2 in P corresponded to a vectorcpi = (xi − xc, yi − yc). Based on
cpi a new vectorfi was constructed where

fi = (I(xi, yi)− I(xc, yc))
cpi

‖cpi‖ (4)

A sum of all the vectors defined inP was taken to bef , i.e.

f =
(2N+1)2∑

i=1

fi (5)

Finally the measureH was defined as the norm off , i.e. ,H = ‖f‖.

152



2.3 L-Image [6] Harbir Singh

Based on theH value a H-image was derived. This is a grayscale image whose pixel values were
theH values calculated over local windows centered on those pixels. The dark and bright areas in the
H-image which represented the region centers and region boundaries were used in carrying out region
growing based on local homogeneity analysis.

2.3 L-Image [6]

Lindeberg describes an approach to edge detection, based on first order derivatives [6]. He proposes
several different measures of edge strength. We have used theGγ−normL index. The edge-strength is
given by

Gγ−normL = tγ(Lx − Ly)2 (6)

wheret is the scale,γ is a normalisation constant, andLx andLy are the first order derivatives with
respect to the subscripts. We usedγ = 0.75 in our experiments, as suggested by the author.

2.4 G-Image : Gain-based Segmentation

This segmentation method is based on regions growing using N8 pixel connectivity and incorporates
information gain heuristic at the pixel processing stage. We consider a grayscale image,I(x, y), of size
M×N wherexε[0,M) andyε[0, N). Each pixel is characterized by a grayscale value, which is restricted
to one of L possible values0, 1...L− 1, where maximumL = 256 gives a 8 bit quantization scheme. An
image may be assumed to consist ofJ regions, each of these is represented by a classJ = 1, 2...J − 1
with J = 0, representing background. Gain is calculated at each pixel using N8 connectivity to obtain a
G-image.

Let setSconsist ofns data points in the N8 neighborhood of a candidate pixel. The intensity value of
each pixel isI(x, y). Considering N8 neighborhood, our sampleS, will consist of 9 points. A pixel can
be included in the region growing process or it can be excluded. Hence there are two classes which the
sample points will be classified into. If theI of each pixel is less than the global thresholdT , then that
pixel is assigned a class of inclusion and if theI of a pixel is more that the thresholdT , then that pixel
is assigned a class of exclusion. Given that our class labelC has two values, (C=includeor C=exclude),
let nsi be the number of pixels belonging to class Ci in our sample.

The expected information for the whole sampleS, is obtained as

EI(S) = −
m∑

i=1

pilog2(pi) (7)

where pi is the probability of occurrence of pixelsi with class Ci in the arbitrary sample and is given by
nsi/ns.

For estimating local constraint, let Ii be the intensity at each pixel i,µi be the mean of all pixels in
the N8 neighbourhood of pixel i andσi be the standard deviation of all pixels in the neighbourhood. The
pixels at which the following condition

√
(Ii − µi)2 < σi (8)

is satisfied are chosen for inclusion in the region growing process. In other words if at a pixel the above
condition is satisfied, then that pixel is assigned a class of inclusion else it is assigned a class of exclusion.
The pixels which are assigned a class of inclusion, are taken to represent the greatest entropy reduction
at the candidate pixel and reflect the least randomness or impurity at the candidate pixel [4].

The expected informationE, at a given sample pixelsi is given as

E(si) = p(si) ∗ EI(si) (9)
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where p(si) is the probability of sample point si.
Total gain is defined as

G = EI(S)− E(si) (10)

Based on the G values, a G-Image is derived. This is a grayscale image whose pixel values are the
G values calculated over local windows centered on those pixels. The areas with a high G value in
the G-image represent region boundaries while areas with low or zero values represent homogeneous
patterns.

2.4.1 Algorithm outline

The steps of the algorithm are outlined below.

1. Initialize the algorithm by providing a grayscale image X(i,j) and a start global threshold valueT
= xs and an end global threshold valueT = xe

2. For each global threshold level ranging fromT = xs to T = xe perform the following steps

2.1 Using N8 pixel connectivity, for all pixels with intensity below global threshold assign class
of inclusion

2.2 Using N8 pixel connectivity, for all pixels with intensity above global threshold assign class
of exclusion

2.3 Calculate expected information of pixels in N8 neighbourhood using Eq. 7

2.4 At the current pixel, using N8 pixel connectivity, assign class to current pixel according to
criteria in Eq. 8

2.5 Calculate expected information at the current pixel using Eq. 9

2.6 Calculate gain at the current pixel using Eq. 10

3. Display and store G-image

4. Repeat from step 2

3 Results and Discussion

We tested our method on a variety of images as shown in Fig. 1. Column (a) shows the original images,
column (b) is the resultant G-image based on our segmentation method, column (c,d) are the result-
ing H-image and J-image, respectively. We also compared our method with an edge detection method
developed by Lindeberg [6]. The implementation of this on our test images is shown in Fig. 2.

Our method performs equally well as compared to the other methods. In the first row of Fig. 1, the
gain image shows sufficient detail and is successful in identifying features such as the eyes, hat and face
in the image. In the second row, the gain image shows the intricate pattern of spots detected. Minute
details such as the whiskers were also picked up. The performance closely matched the result of the
H-image. The third row shows results based on lung CT data. Our method is successful in identifying
the two lung region along with the trachea in the center and a few structures of interest within the two
lung regions. This is again comparable to the brightest lines in the H-image. Lastly, in the last row we
test the method on an artificial image of different object shapes with the same contrast. Once again the
performance of the method is comparable to the other methods in identifying the object regions. These
results indicate a clear boundary detection between classes for both the H and G images and as such
provide an appropriate starting point for image segmentation. It should be noted that the H images seem
to represent a noisy version of the G images. When comparing the result with the J images, these seem
less well defined and as such might provide a poor starting point for segmentation.
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(a) (b) (c) (d)

Figure 1: Segmentation results: (a) original image, (b) G-image at optimum threshold, (c) H-image, (d)
J-image.

In our implementation of J-image we used quantization of greyscale images into 64 bins. The original
algorithm deals with color images and uses a more complex quantization method based on peer-group
filtering [2] where high and low J values correspond to possible boundaries and interiors of color texture
regions. Deng and Manjunath mention that even though JSEG can be applied on grayscale images,
the result are reasonable to an extent but not as good as color image ones as intensity alone is not as
discriminative as color.

In addition when comparing with the L images (see Fig. 2), it is clear that the obtained class boundaries
in the H and G images are a subset of the detected edges. On the other hand, the L images provide more
detail as weak edges which do not represent class boundaries are also highlighted.

Accurate medical image segmentation to extract relevant parts of the anatomy is a crucial precursor
for diagnosis and quantitative analysis. Some CT lung image results are shown in Fig. 3. A CT lung
slice for the mid-thoracic region was segmented at different global threshold values,T . This shows that
depending on the value ofT various anatomical structures are extracted, e.g. at highT values the rib
bones are found whilst at lower values soft tissue class boundaries are enhanced. To obtain the results
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Figure 2: Edge detection as described in Sec. 2.3, see Fig. 1(a) for the original images.

provided in Fig. 1 these individual threshold results are combined to provide the overall most likely class
boundaries.

To further ascertain the utility of our method we show in Fig. 4 attempts at object selection dependent
on contrast. Image (a) shows contrasting objects. Based on different global threshold values, we were
able to select the objects as shown in the subsequent images. This would be difficult using methods
which merely detect edges of objects and added steps of region labelling and selection based on region
labels would be required.

Although not covered here, the extension of the developed G images can easily be extended to G
volumes and as such can be used for anatomical segmentation of volumetric medical data, such as CT or
MRI.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Sequence of CT lung images at different global threshold levels: (a) original image, (b) T=60,
(c) T=90 (d) T=120, (e) T=150, (f) T=180, (g) T=210, (h) T=243.

4 Conclusion

We have presented a novel approach to carrying out segmentation when little prior knowledge is known
about the scene. In addition we have also compared our method with existing techniques highlighting
the uniqueness of our method. In future we intend to extend our analysis for carrying out unsupervised
segmentation to 3D volumes and do further analysis in the region growing and merging area. Extension
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(a) (b) (c) (d) (e)

Figure 4: Effect of contrast: (a) original image, (b) T=50, (c) T=70, (d) T=120, (e) T=160.

to color images is also planned where an approach similar to [5] could be applied to the three RGB color
values and the results combined by taking the norm of the RGB component results.

References

[1] L. Cheng and T. Caelli. Unsupervised image segmentation: a bayesian approach.The 16th Inter-
national Conference on Vision Interface, Halifax, Canada, 7(2), June 2003.

[2] Y. Deng and B.S. Manjunath. Unsupervised segementation of color-texture regions in images and
video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(8):800–810, 2001.

[3] C. Derrode, C. Carincotte, and S. Bourennane. Unsupervised image segmentation based on high-
order hidden markov chains.IEEE International Conference on Acoustics, Speech, and Signal
Processing, Montreal, Canada, May 2004.

[4] J. Han and M. Kamber.Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco
CA, 2001.

[5] F. Jing, M. Li, H. Zang, and B. Zang. Unsupervised image segmentation using homogeneity anal-
ysis. Proc. IEEE International Symposium on Circuits and Systems, 2:456–459, May 2003.

[6] T. Lindeberg. Edge detection and ridge detection with automatic scale selection.International
Journal of Computer Vision, 30(2):117–154, 1998.

[7] D. Marr. Vision. Freeman, San Francisco CA, 1982.

[8] H.H. Muhammed. Unsupervised hyperspectral image segmentation using a new class of neuro-
fuzzy systems based on weighted incremental neural networks.31st Applied Image Pattern Recog-
nition Workshop, Washington, D.C., USA, pages 171–177, 2002.

[9] J. Puzicha, T. Hofmann, and J.M. Buhmann. Histogram clustering for unsupervised image segmen-
tation. Pattern Recognition Letters, 20(9):899–909, 1999.

[10] P.K. Saha and J.K. Udupa. Optimum image thresholding via class uncertainity and region homoge-
niety. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(7):689–706, 2001.

[11] C.W. Shaffrey, N.G. Kingsbury, and I.H. Jermyn. Unsupervised image segmentation via markov
trees and complex wavelets.IEEE International Conference on Image Processing, 3:801–804, Sept.
2002.

[12] C.F. Sin and C.K. Leung. Image segmentation by edge pixel classification with maximum entropy.
International Symposium on Intelligent Multimedia, Video and Speech Processing, pages 283–286,
May 2001.

157



ORIENTED PARTICLE SPRAY:
PROBABILISTIC CONTOUR TRACING

WITH DIRECTIONAL INFORMATION
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Abstract

Contour following is a standard activity in rotoscoping in the digital post production domain. An
artist might need tocut outor edit an object separately from its background and it is left to the artist
to manually create the cut out. Techniques for automatically tracing the edges of the object exist,
but these operate with heavy manual intervention. The most recent technique called JetStream is a
considerable advance on manual or semi-automatic tracing,but suffers from a lack of direction infor-
mation in the image. This paper considers the incorporationof this information and so reworks the
principle of density propagation for contour following. The approach is more robust than previous
methods although inevitably needs user intervention to incorporate image semantics.
Keywords: Particle Filter, Contour tracking, Rotoscoping, Bayesian Inference, Sequential Impor-
tance Resampling, Directional Filters, Steerable Filtering

1 Introduction

Manual or semi-automatic contour following is an importanttask in image editing. The tracing of object
contours in general is also seen as an important task in earlyvision [3]. Cut-out tools that assist the user
in following a contour, can be seen in Adobe Photoshop for instance. Automated or semi-automated
contour following is complicated by the ambiguity of any contour in an image. Not only is it difficult to
track exactly the position of a contour because of poor imagecontrast and noise, but also it is impossible
to forsee the contour chosen by the user on the basis of semantics.

Recently, Perez, Blake and Gagnet [4] have proposed a robusttechnique—calledJetStream—for con-
tour following that handles this ambiguity by sampling fromthe posterior distribution for the contour
location. It is based on the use of a Particle Filter and its operation can be understood as explained in the
following section.

Probabilistic Tracing Approach using Particle Filters

The approach proposed in JetStream [4] to extract a contour can be understood by using an analogy with
manual tracing. Starting from a pointx0, the pencil draws a contour by following the edge of the picture.
The current position of the pencil at timet is denotedxt. Tracing the contour can then be understood as
tracking the pencil. The growing contour is represented by an orderedsequencex0:t ≡ (x0 . . .xt).

∗This work has been funded by HEA PRTLI TRIP and Enterprise Ireland Grant CASMS
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Let θt+1 be the angle formed by the segment[xi;xi+1] with the hori-
zontal axis and let assume that the points are equally spacedby a step
d. To simplify the problem, we assume that pencil speed is constant and
therefored is set tod = 1.

xt+1 = xt + d

[

cos(θt+1)
sin(θt+1)

]

(1)

The idea of using Particle Filters for tracing is understoodmore easily
with the help of the adjacent figure. While following a contour in the
mountain picture, the pencil encounters bifurcations and edge junctions.
To select the most likely path, the idea is to try all possiblepaths and to

decide afterwards which one is the best. In our mountain picture example, growing contoursx(0)
0:t (in

pink), x(1)
0:t (in yellow) andx(2)

0:t (in green) correspond to 3 different possible tracings all originating from
the same starting pointx0. The Particle Filter framework—described properly in the next section—
proposes to grow simultaneously a number of possible contours—also calledparticles. The particles can
take separate decisions when they reach an edge junction. The framework decides whether a particle
should grow further, duplicate itself, or stop, depending on its performance.

JetStream, though an elegant solution to a combinatoriallydifficult problem, suffers from an inability
to handle sudden changes in direction without the use of a switching process. In effect, upon encoun-
tering a corner, the idea is to propose unconstrained direction possibilities in the expectation that one
of the proposed direction will regain a contour ‘lock’. Thispaper resolves the problem by designing a
directional probability density function (pdf) that is better able to control the evolution of the contour.
Because of the reliability of this pdf it is then possible to relieve the need for heavy control on contour
smoothness. The particle filter framework is presented nextand the new design explained as problems
are highlighted.

2 Probabilistic Contour Tracking Framework

2.1 Standard Approach using Particle Filters

Recall that the ordered sequencex0:t ≡ (x0 . . .xt) represents the 2D points of the curve being tracked.
This chain is assumed to be a Markov Chain of order 2, ie.p(x|x0:t) = p(x|xt,xt−1). Given the
observed image represented by a vectory, a probabilistic approach to tracking proceeds by manipulating
the posterior,p(x0:t+1|y) to estimate the most probable next positionxt+1. This distribution can be
written in a recursive form:

p(x0:t+1|y) = p(xt+1|y,x0:t) p(x0:t|y) (2)

This form admits a solution which manifests as the propagation of densities from point to point on each
contour. Bayes rule combined with the Markovian hypothesison the contour leads to the following
expression for the posterior:

p(x0:t+1|y) ∝
t+1
∏

i=2

p(xi|xi−1,xi−2) p(y|xi,xi−1) (3)

It is then possible to show that the following recursion arises:

p(x0:t+1|y) = p(xt+1|xt,xt−1) p(y|xt+1,xt) p(x0:t|y) (4)

The termp(xt+1|xt,xt−1) corresponds to theprior on the contour andp(y|xt+1,xt) to thedata model.

2
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Although we might have an analytical expression for the prior and the data model, this expression
presents usually no simple closed form. Sequential Monte Carlo methods (also calledparticle filters)
provide however a flexible and easy way of propagating an approximation of this posterior distribution.
In this framework the posteriors are approximated in a grid-based fashion by a finite set(x

(m)
0:t )m=1...M

of M samples orparticles:

p(x0:t|y) ≈
M
∑

m=1

w
(m)
t δ(x0:t − x

(m)
0:t ) (5)

whereδ(.) denotes the Dirac delta measure which is 1 in 0 and zero otherwise; w(m)
t the importance

weight attached to particlex(m)
0:t . Note that our particles correspond to contours (x

(m)
0:t ) and not to single

2D points. The posterior approximation can be propagated intime by the generic boostrap filter (or
Sequencial Importance Resampling (SIR) Particle Filter) [1, 2] as proposed for instance in JetStream.
At each time iteration, the weights are chosen using the principle of importance sampling[1, 2]. As we
know, it can be difficult to draw directly samples from the posterior p(x0:t|y). However, it is usually
possible to find as a first step a proposal—calledimportance density—from which we can easily draw
samples. In the bootstrap filter the proposal is simply the prior densityp(xt+1|x(m)

t ,x
(m)
t−1) and the

weights are therefore given by the likelihood [1, 2]:

w
(m)
t+1 ∝

p(x
(m)
t+1,x

(m)
t |y)

p(x
(m)
t+1|x

(m)
t ,x

(m)
t−1)

= p(y|x(m)
t+1 ,x

(m)
t ) (6)

To avoid that the weight distribution becomes more and more skewed which leads to the degeneracy
of the particles, the bootstrap filter adds aselectionstep. In this crucial step theM growing contours
are drawn from the normalised weight distribution. The ideais that ‘good’ contours will be statistically
replicated whereas the ‘bad’ one will be deleted.

From these approximations of the posterior distributionp(x0:t|y), an approximation of the Maximum
A Posteriori can be derived by taking the ‘best’ contour.

2.2 Exact Importance Sampling

A good choice for the proposal is key to the success of the particle filter algorithm. In JetStream—as in
many tracking algorithms—the importance distribution is however constrained by the smoothness of the
particle’s trajectory. For instance the trajectory of the contour cannot deviate by more than a few degrees.
A special case is made when particles reach a corner: particles are allowed to take any direction. With
such hypotheses the position of the next particle is strongly restricted and in our experience, at the price
of missing frequently sharp turns in the contour as shown in figure 7. This problem arises due to the
difficulty in designing a prior that will both play the role ofa good proposal—able to restrict the search
area—and that will give enough flexibility to model the dynamics of the contour.

As a key deviation from this classical approach, we propose to reconsider equation 3 and choose
directly as the proposal

q(xt+1|y,x(m)
0:t ) =

p(xt+1|x(m)
t ,x

(m)
t−1) p(y|x

(m)
t ,xt+1)

∫

xt+1
p(xt+1|x(m)

t ,x
(m)
t−1) p(y|x

(m)
t ,xt+1) dxt+1

(7)

By doing so, we take the optimal proposal and we ensure a perfect sampling of the posterior, without
any additional constraint on the prior function. The difficulty lies now in drawing the samplex(m)

t+1

directly from the proposal. Both priorp(xt+1|x(m)
t ,x

(m)
t−1) and likelihoodp(y|x(m)

t ,xt+1) functions will
be explicited in section 3 and section 4.

3
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Figure 1: Outlines of the Oriented Particle Spray

1. Initialisation. t = 0, manually setx(m)
0 = x0

2. Importance Sampling Step
For each particlem, do:

• Prediction:

x
(m)
t+1 ∼ p(xt+1|x(m)

t ,x
(m)
t−1)p(y|x

(m)
t ,xt+1) (10)

• Weighting:

w
(m)
t =

∫

xt+1

p(xt+1|x(m)
t ,x

(m)
t−1)p(y|x

(m)
t ,xt+1)dxt+1 (11)

3. Selection Step.Resample with replacementM contours from the set
(

x
(m)
0:t+1;m = 1, . . . ,M

)

according to the normalised importance weightsw
(m)
t /

∑

m w
(m)
t .

The weights are defined by

w
(m)
t+1 ∝ p(xt+1|y,x(m)

0:t )

q(xt+1|y,x(m)
0:t )

(8)

=

∫

xt+1

p(xt+1|x(m)
t ,x

(m)
t−1) p(y|x

(m)
t ,xt+1) dxt+1 (9)

The final outline of our contour tracking algorithm is summarised in figure 1.

3 The Prior on the Contours

As the prior does not serve as a proposal, we can adopt a weak constraint on the dynamic of the con-
tour. We only assume that a particle cannot return to a previous position. This problem—trivial in
appearance—has to be handled carefully to avoid that the particles try to rediscover their exact reverse
trajectory.

Using the trajectory angleθ, the prior can then be rewritten as

p(xt+1|x(m)
t ,x

(m)
t−1) = p(θt+1|θ(m)

t ) (12)

We propose here a naive solution that disallows angles diametrically opposed to the previous direction
angle taken by the particle.

p(xt+1|x(m)
t ,x

(m)
t−1) = φb(dist(θt+1, θ

(m)
t )) (13)

whereφb is a kernel function based on the distance between angles as represented in figure 2.

4 Likelihood

Introducing the angle notation as previously, the likelihood can be reexpressed as

p(y|xt+1,x
(m)
t ) = p(y|θt+1,x

(m)
t ) (14)

4
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Figure 2: Values of the kernel forθ → φb(dist(θ, 0)).

which stands for the probability that at pixelx
(m)
t an edge goes along the directionθt+1. The likelihood

presented in JetStream relies mainly on the simple definition of the edge: the angle of the edge is defined

by θ = atan2(Iy, Ix)1 and its norm byN =
√

I2
x + I2

y , whereIx and Iy are the derivatives of the

picture I. This definition presents a strong drawback: it assumes thatonly one edge passes by the
pixel of consideration. In consequence, this approach cannot cope with corners, or junctions. Even if
JetStream attempts to handle this problem by using a Harris corner detector beforehand, Figure 7 shows
that JetStream still tends to fail quite easily in its tracking. We propose therefore to fully integrate the
orientation of the contours in our likelihood function. To do so, we makep(y|θt+1,x

(m)
t ) explicit by an

approach similar to Steerable Filters [6, 5] and more specifically in [7].
Let us assume that the probability that at pixelx

(m)
t , the directionθt+1 corresponds to an edge is

proportional to the absolute variation of the angular intensity, i.e.:

p(y|θt+1,x
(m)
t ) ∝

∣

∣

∣

∣

dIθ
dθ

∣

∣

∣

∣

(15)

where the intensity in directionθ ∈ [0; 2π] Iθ is equal to:

Iθ =

∫

ρ>0
I(ρ, θ)g(ρ) dρ (16)

(ρ, θ) is a pixel coordinate location in polar coordinates, with origin at the current contour point. The
integral is just the sum of pixels along the directionθ. g(ρ) is a smoothing kernel (a gaussian for
instance), which ensures that pixels closer to the origin are more important than those further away.
Note thatρ > 0 since we wish to design a meaningful direction metric.

To interpolateIθ to all values ofθ we can take advantage of the periodicity ofIθ (since the function
would repeat every360deg) and so consider its Fourier series:

Iθ =

n=N
∑

n=0

Hne
jnθ (17)

and respectively for its derivative:

p(y|θt+1,x
(m)
t ) ∝

∣

∣

∣

∣

dIθ
dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n=N
∑

n=0

n j Hne
jnθ

∣

∣

∣

∣

∣

(18)

The Fourier coefficients can be computed with:

Hn =

∫

φ,ρ

I(ρ, φ)wn(ρ, φ) ρdφdρ (19)

1
atan2 is tan

−1 with unwrapped angles.

5

162



François Pitiéet al.

where

wn(ρ, φ) =
1

ρ
g(ρ)ejnφ (20)

The continuous values ofI(ρ, θ) are obtained by interpolation from the image grid. This can be clas-
sically obtained by convolving the sampled pictureI(x, y) with an interpolation kernelk. To simplify
notations we will consider cartesian coordinates:

{

(u, v) ≡ (ρ, φ) = (
√
u2 + v2, atan2(v, u))

(x, y) ≡ (r, ψ) = (
√

x2 + y2, atan2(y, x))
(21)

Hn =

∫

u,v

(I ∗ k) (u, v)wn(u, v) dudv (22)

=

∫

u,v

(

∑

x,y

I(x, y)k(u− x, v − y)

)

wn(u, v) dudv (23)

=
∑

x,y

I(x, y)

∫

u,v

k(u− x, v − y)wn(u, v) dudv (24)

By making explicit the interpolation kernel in this way, we are able to derive a complete framework for
calculation of the direction information. Finally we have:

Hn =
∑

x,y

I(x, y)hn(x, y)

hn(x, y) =

∫

u,v

k(u− x, v − y)wn(u, v) dudv

SoHn can be computed by the use of a filter bank whose maskhn(x, y) can be computed offline. We
still need to make explicit the kernelsk andg. Here is a possible implementation:

g(ρ) =
1

√

2πσ2
g

exp

(

− ρ2

2σ2
g

)

k(u− x, v − y) =
1

2πσ2
k

exp

(

−ρ
2 + r2 − 2rρ cos(ψ − φ)

2σ2
k

)

Figure 4, shows examples of 11-tap filtershn.

Examples. Figure 5 shows an example of such a pdf. On the right the valuesof
∣

∣

∣

dIθ

dθ

∣

∣

∣
correspond to

the pdf of the contour directions at the center of the pictureon the left. This was obtained forσg = 2.25,

σk = 0.7 at orderN = 10. On the left side, the red lines correspond to the lobes of
∣

∣

∣

dIθ

dθ

∣

∣

∣
.

5 Conclusion

Figure 7 shows some simulations of JetStream (on the left) and the Oriented Particle Spray (on the right).
It is visible that JetStream tends to overshoot sharp anglesof the contours whereas our method can follow
them correctly, for a computational time equivalent to JetStream (the simulations where performed under
matlab). This comparison has been carried out without user interaction that is an essential tool in a
contour tracing application. The proposed improvements, in dealing better with sharp angles, should
henceforth simplify and limit the user efforts.

A further development of this algorithm could be also to automatically extractall relevant contours of
a picture by letting branches to grow separately after edge junctions.

6
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Figure 3: Summary of the algorithm for computing the likelih oodp(y|θt+1,x
(m)
t )

Offline computations:

hn(x, y) ∝
∫

ρ,φ

exp

(

−ρ
2 + r2 − 2rρ cos(ψ − φ)

2σ2
k

)

exp

(

− ρ2

2σ2
g

)

exp (jnφ) dφdρ (25)

with the normalizing constant:

C =
1

2πσ2
k

√

2πσ2
g

(26)

Online computations:
Hn =

∑

x,y

I(x, y)hn(x, y) (27)

p(y|θt+1,x
(m)
t ) ∝

∣

∣

∣

∣

dIθ
dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n=N
∑

n=0

jnHne
jnθ

∣

∣

∣

∣

∣

(28)

Figure 4: Examples of 11-tap filtershn(x, y) for n = 1, n = 3 andn = 7.
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Figure 5:Example of an image (on the left) and the corresponding values of
∣

∣

dIθ

dθ

∣

∣ for θ in [0◦; 360◦]. On the left
the red lines correspond to the directions of maximum variations (lobes of

∣

∣

dIθ

dθ

∣

∣).
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Abstract

In this paper the problem of nonparametric impulsive noise removal in multichannel images is
addressed. The proposed filter class is based on the nonparametric estimation of the density proba-
bility function in a sliding filter window. The obtained results show good noise removal capabilities
and excellent structure preserving properties of the new impulsive noise reduction technique.
Keywords: color image enhancement, impulsive noise removal, image restoration

1 Introduction
The majority of the nonlinear, multichannel filters are based on the ordering of vectors in a sliding filter
window. The output of these filters is defined as the lowest ranked vector according to a specific vector
ordering technique.

Let the color images be represented in the commonly used RGB color space and letx1, x2, . . ., xN be
N samples from the sliding filter windowW . Each of thexi is anm-dimensional multichannel vector,
(in our casem = 3). The goal of the vector ordering is to arrange the set ofN vectors{x1,x2, . . . ,xN}
belonging toW using some sorting criterion.

In [1, 2] the ordering based on the cumulative distance functionR(xi) has been proposed:R(xi) =∑N
j=1 ρ(xi,xj), whereρ(xi,xj) is a function of the distance amongxi andxj . The ordering of the

scalar quantities according toR(xi) generates the ordered set of vectors. The most commonly used
measure to quantify distance between two multichannel signals is the Minkowski normργ(xi,xj) =
[
∑m

k=1 |xik − xjk|γ ]1/γ . The Minkowski metric includes the city-block distance (γ = 1), Euclidean
distance (γ = 2) and chess-board distance (γ = ∞) as the special cases.

One of the most important noise reduction filter is the vector median. In the case of gray scale images,
given a setW containingN samples, the median of the set is defined asx(1) ∈ W such that∑

j

∣∣x(1) − xj

∣∣ <∑
j
|xi − xj | , ∀ xi, xj ∈ W. (1)

Median filters exhibit good noise reduction capabilities, (especially when long tailed distribution noise
is involved) and outperform simple nonadaptive linear filters in preserving signal discontinuities. As in
many applications the signal is multidimensional, in [3] theVector Median Filter(VMF) was introduced,
by generalizing the definition (1) using a suitable vector norm. Given a setW of N vectors, the vector
median of the set is defined asx(1) ∈ W satisfying∑

j

∥∥x(1) − xj

∥∥ <
∑

j
‖xi − xj‖ , ∀ xi,xj ∈ W . (2)
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The orientation difference between two vectors can also be used as their distance measure. This so-called
vector angle criterion is used by theVector Directional Filters(VDF), to remove vectors with atypical
directions, [4]. TheBasic Vector Directional Filter(BVDF) is a ranked-order, nonlinear filter which
parallelizes the VMF operation. However, a distance criterion, different from the distance norms used
in VMF is utilized to rank the input vectors. The output of the BVDF is that vector from the input
set, which minimizes the sum of the angles with the other vectors. To improve the efficiency of the
directional filters, another method calledDirectional-Distance Filter(DDF) was proposed. This filter
retains the structure of the BVDF, but utilizes the combined distance criterions to order the vectors inside
the processing window, [4,5].

2 Nonparametric Estimation
Applying statistical pattern recognition techniques requires the estimation of the probability density func-
tion of the data samples. Nonparametric techniques do not assume a particular form of the density func-
tion since the underlying density of the real data rarely fits common density models.

Nonparametric Density Estimationis based on placing a kernel function on every sample and on the
summation of the values of all kernel function values at each point in the sample space, [6, 7]. The
nonparametric approach to estimating multichannel densities can be introduced by assuming that the
color space occupied by the multichannel image pixels is divided intom-dimensional hypercubes. IfhN

is the length of an edge of a hypercube, then its volume is given byVN = hm
N . If we are interested in

estimating the number of pixels falling in the hypercube of volumeVN , then we can define the window
function φ(xi) = 1, if |xij | ≤ 1/2, j = 1, . . . ,m and 0 otherwise, which defines a unit hypercube
centered in the origin.

The functionφ (‖x− xi‖ /hN ) is equal to unity if the pixelxi falls within the hypercubeVN centered
atx and is zero otherwise. The number of pixels in the hypercube with the length of edges equal tohN

is thenkN =
∑N

i=1 φ (‖x− xi‖/hN ) and the estimate of the probability that a samplex is within the
hypercube ispN = kN/NVN , which gives

pN (x) = (NVN )−1
∑N

i=1
φ (‖x− xi‖/hN ). (3)

This estimate can be generalized by using a smooth kernel functionK in place ofφ(·) and the
width parameterhN satisfying:K(x) = K(−x), K(x) ≥ 0,

∫
K(x) dx = 1 and limN→∞ hN = 0,

limN→∞ hm
N = ∞.

The multivariate estimator in them-dimensional case is defined as

p∗N (x) =
1
N

N∑
i=1

1
h1 . . . hq

K
(
|x1 − xi1|

h1
, · · · ,

|xq − xiq|
hm

)
, (4)

with K denoting a multidimensional kernel functionK : Rm → R, h1, . . . , hm denoting bandwidths
for each dimension andN being the number of samples inW . A common approach to build multi-
dimensional kernel functions is to use aproduct kernelK(u1, . . . , um) =

∏m
i=1 K(ui), whereK is a

one-dimensional kernel function

p∗N (x) =
1
N

N∑
i=1

m∏
j=1

(
|xij − xj |

hi

)
. (5)

The shape of the approximated density function depends heavily on the bandwidth chosen for the density
estimation. Small values ofh lead to spiky density estimates showing spurious features. On the other
hand, too big values ofh produce over-smoothed estimates that hide structural features.

If we chose the Gaussian kernel, then the density estimate of the unknown probability density function
atx is obtained as a sum of kernel functions placed at each samplexi
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pN (x, h) =
1

N
(
h
√

2π
)m N∑

i=1

exp

(
−‖x− xi‖2

2h2

)
. (6)

The smoothing parameterh depends on the local density estimate of the sample data. The form of the
data dependent smoothing parameter is of great importance for the non-parametric estimator.

Choosing the Gaussian kernel function forK, the optimal bandwidth is

h∗ = (4/(m + 2))−
1

m+4 σ̂ N− 1
m+4 , (7)

whereσ denotes the approximation of the standard deviation of the samples. In one dimensional case
(7) reduces to the well known, ’rule of thumb’,h∗ = 1.06N− 1

5 σ̂, [6, 7]. A version which is more
robust against outliers in the sample set can be constructed if the interquartile range is used as a measure
of spread instead of the variance, [6]. This modified estimator ish∗ = 0.79%N− 1

5 σ̂, where% is the
inter-quartile range. Another robust estimate of the optimal bandwidth ish∗ = 0.9AN− 1

5 σ̂ with A =
min (σ̂, %/1.34). Generally the simplified rule of choosing the optimal bandwidthh can be written as

h∗1 = C σ̂ N− 1
m+4 , (8)

whereC is an appropriate weighting coefficient.
From the maximum likelihood principle and assuming independence of the samples, one can write the

likelihood of drawing the complete dataset as the product of the densities of one sample

L(h) =
N∏

j=1

pN (xj , h) =
N∏

j=1

1
N

N∑
i=1

1(
h
√

2π
)m exp

(
−‖xj − xi‖2

2h2

)
. (9)

As this likelihood function has a global maximum for h=0, in [8] a modified approach has been proposed

L∗(h) =

 N∏
j=1

1
N

N∑
i=1, i 6=j

1(
h
√

2π
)m exp

(
−‖xj − xi‖2

2h2

) 1
m

. (10)

This function has one maximum forh, which can be found by setting to 0 the derivative of the logarithm
of L∗(h) with respect to h, which gives

1
N

N∑
j=1

N∑
i6=j

‖xj−xi‖2
h3 exp

(
−‖xj−xi‖2

2h2

)
N∑

i6=j

exp
(
−‖xj−xi‖2

2h2

) =
m

h
. (11)

A crude but rather fast way to obtain an approximate solution of (11) is by assuming that the density
estimate of Eq. (5) on a certain locationx in the feature space is determined by the nearest kernel
only, [8]. In this case

∂ log(L∗(h))
∂h

=
1
N

∑n

j=1

‖x̃j − xi‖2

h3
=

m

h
. (12)

In this paper we use the optimalh derived from (12) defined as

h∗2 = C

(
(mN)−1

∑N

j=1
‖x̃j − xj‖2

) 1
2

, (13)

wherex̃i represents the nearest neighbor of the samplexi, andC is a tuning parameter.
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3 Proposed Algorithm
Let us assume a filtering windowW containingN image pixels,{x1, . . . , xN} and let us define the
similarity functionµ : [0;∞) → R which is non-ascending and convex in[0;∞) and satisfiesµ(0) = 1,
µ(∞) = 0 . The similarity between two pixels of the same intensity should be 1, and the similarity
between pixels with minimal and maximal gray scale values should be very close to 0. The function
µ(xi, xj) defined asµ(xi, xj) = exp{−[(xi − xj)/h]2}, whereh is the bandwidth of the Gaussian
kernel, defined by (8) or (13), satisfies the required conditions.

a) b)

c) d)

Figure 1: Impulsive noise removal technique in the 2D case. Fig.a) depicts the arrangement of pixels
in W and Fig.b) their nonparametric probability density estimation. Figs.c) andd) present the density
plots for the cases when the central pixelsxA andxB are removed fromW . It can be seen that in the
first casec) the pixelx1 = xA will be retained and in the second cased) the pixelx1 = xB will be
replaced byxA. The pixelxA will be preserved, as in Fig.c) the plot attains its maximum atxC , but this
maximum is less than the maximum forxA in Fig. b). Regarding samplexB, its rejection causes that
the maximum is attained atxA and this pixel will replace the central pixelxB.

Let us additionally define the cumulated sumM of similarities between a given pixel and all other
pixels belonging to windowW . For the central pixelx1 we introduceM1 and for the neighbors ofx1 we
defineMk as

M1 =
N∑

j=2

µ(x1, xj), Mk =
N∑

j=2, j 6=k

µ(xk, xj), k > 1, (14)

which means that forxk, which are neighbors ofx1, we do not take into account the similarity between
xk andx1, which is the main idea of this algorithm. The omission of the similarityµ(xk, x1) when
calculatingMk, privileges the central pixel, as in the calculation ofM1 we haveN − 1 similarities
µ(x1, xk), k > 2 and forMk, k > 1 we have onlyN − 2 similarity values, as the central pixelx1 is
excluded from the calculation ofMk, [9,10], (see Figs. 1, 3).

In the construction of the new filter, the reference pixelx1 in the windowW is replaced by one
of its neighbors ifM1 < Mk, k = 2, . . . , N . If this is the case, thenx1 is replaced by thatxk∗

for which k∗ = arg max Mk, k = 2, . . . , N . In other wordsx1 is detected as being corrupted if
M1 < Mk, k = 2, . . . , N and is replaced by its neighborsxk which maximizes the sum of similarities
M between all the pixels fromW excluding the central pixel.

The basic assumption is that a new pixel must be taken from the windowW , (introducing pixels, that
do not occur in the image is prohibited like in the VMF). For this purposeµ must be convex, which
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means that in order to find a maximum of the sum of similarity functionsM it is sufficient to calculate
the values ofM only in pointsx1, x2, . . . , xN .

The working scheme of the new filter is presented in Fig. 3 for the gray scale case and in Fig. 1 for the
two-dimensional data. In the example provided by Fig. 3, the supporting windowW contains 9 pixels
of intensities{15, 24, 33, 41, 45, 55, 72, 90, 95}, (their special arrangement in W is not relevant). Each
of the graphs froma) to i) shows the dependence ofM1 andMi/1 on the gray scale value, (M/1 < M1),
whereMi/1 denotes the cumulative similarity value with rejected central pixelx1, on the sample’s
intensity. Grapha) shows the plot ofM1 andM/1 for x1 = 15, plot b) for x1 = 24 and so on till plot
plot i), which shows the graphs ofM1 andM/1 for x1 = 95. The central pixel will be replaced in cases:
(a), (b), (f) - (i), as in those cases there exists a pixelxk for which M1 < Mk. The continuous plots
show that the extremum of the similarity functionM/1 is always obtained at pointsxk ∈ W , which is an
important feature of this algorithm. Because the functionM/1 is convex, the maximum can be found by
calculating the similarity values inN points only, which makes the algorithm relatively fast.

The presented approach can be applied in a straightforward way to multichannel images using the
similarity function defined asµ(xi,xj) = exp{−[‖xi−xj‖/h]2}, where‖ ·‖ denotes the specific vector
norm andh denotes the bandwidth. Now in exactly the same way we can maximize the total similarity
functionM for the vector case.

4 Results
The performance of the proposed impulsive noise reduction filters was evaluated using the widely used
PSNR quality measure. Figure 2a) shows the dependence of the noise attenuation capability of the
proposed filter class on the bandwidth typeh∗1 andh∗2 defined by (8) and (13). Clearly the filter based on
theh∗2 outperforms the technique based on theh1 bandwidth for the whole range of used contamination
probabilitiesp, (p = 0.01 - 0.1).

Figure 2b) presents the dependence of the PSNR restoration quality measure on the kind of the
Minkowski norm. Surprisingly, theL∞ norm yields significantly better results than theL1 or L2 norms.
This is the result of the construction of theh∗2 bandwidth, which depends on the nearest neighbor in the
sliding filter window. This behavior is advantageous, as the calculation of theL∞ norm is much faster
than the evaluation of distances determined byL1, L2 norms.

The efficiency of the filters based on adaptiveh∗1 andh∗2 bandwidths are dependent, (especially for
very small noise contamination) on the coefficientC in (8) and (13). Figure 2c) shows the dependence
of PSNR for the filter based onh∗2 as a function ofC in (13). For low noise intensity the parameterC
should be significantly larger than for the case of images corrupted by heavy noise process. However,
settingC to 4 is an acceptable trade-off, as can be seen in Fig. 2 d), which depicts the efficiency of the
proposed filter in comparison with VMF, AMF and BVDF. It can be observed that although theC = 4
is not an optimal setting for the whole range of tested noise intensities, nevertheless the described filter
yields much better results than the traditional techniques.

This is also testified by Fig. 4, which compares the filtering results obtained by the filter based on
adaptiveh∗2 bandwidth with the performance of thereferenceVMF, BVDF, DDF filter. As can be ob-
served the new filtering has much better detail preserving properties than VMF, BVDF and DDF.

5 Conclusions
In this paper a new nonparametric technique of impulsive noise removal in multichannel images has
been proposed. The described filter class is based on the estimation of the kernel bandwidth using the
technique proposed in [8]. The experiments revealed, that the proposed algorithm yields the best results
when applying theL∞ norm, which makes the filter computationally very attractive. The obtained results
show that the proposed technique excels significantly over the standard techniques like VMF, BVDF and
DDF. The future work will focus on the automatic adjustment of the tuning parameterC in (8) and (13).
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a) b)

c) d)
Figure 2: Dependence of the efficiency of the proposed filtering scheme onh∗1 (8) andh∗2 (13) - (a),
besides the dependence of the PSNR on the tuning parameterC in (13) - (b) and the dependence on
the kind of Minkowski norm for the bandwidthh2∗ - (c). Figure (d) shows the comparison of results
obtained using theh∗2 bandwidth,L∞ norm andC = 4 with the standard multichannel filters VMF and
BVDF, (test were performed on the color imageLENA); p denotes the probability of a pixel corruption -
to RGB channels random, uniformly distributed values from the interval [0,255] were assigned.
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(1) (2)

a1) b1)

c1) d1)

e1) f1)

a2) b2)

c2) d2)

e2) f2)

Figure 4: Illustrative example of the efficiency of the proposed algorithm:a) zoomed parts of the test
color images,b) image corrupted by 3% of impulsive noise,c) image after filtering with the proposed
filter, d) VMF output,e) DDF output,f) BVDF output.
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Abstract

Tracking moving objects is a basic tool which allows the development of solutions to complex
problems such as target acquisition, automatic surveillance, action recognition, etc. Tracking algo-
rithms generally deal with video that is from 15 to 30 frames per second, and the objects in motion
do not exhibit huge jumps. However, if the video frame rate is low, or more precisely, if the objects
in motion move large distances from frame to frame, current tracking methods will perform very
poorly.

We propose a method of tracking that allows for large spatial discontinuities in object motion and
is still able to track successfully. The feasibility of tracking in these sequences is demonstrated, and
results are given from application of the proposed method to video sequences taken at 2 frames per
second.
Keywords: Uncooperative Video, Tracking

1 Introduction

The problem of tracking moving objects in a video sequence is a well known and well researched problem
in Computer Vision. There are many tracking algorithms such as Mean Shift [3], Multiple Hypothesis
Trackers [5], Bayesian methods [7] [6], even Monte Carlo methods [4]. However, most tracking problems
and solutions deal with video data that has relatively good frame rates, i.e. from 15 to 30 fps, and the
objects in motion do not exhibit huge jumps. However, if the video frame rate is low or, more precisely,
the objects in motion move so much from frame to frame that their new positions do not overlap their
previous positions, current tracking methods will perform very poorly.

Part of the problem of tracking in these conditions is that we do not immediately know what we are
tracking, the number of objects, or their boundaries. Simple application of connected components to
foreground blobs will not be correct since a group of objects will be mistaken for one object, and when
the group splits up the tracker will become confused and lose them. This confusion arises because there
is no longer any area of the video frame which looks enough like the group before it split. However,
subsections of that group (the individual people) still exist. Since the group still exists as separate com-
ponents, it is reasonable to expect that if you subdivide the original group correctly, and then look for the
subsections, your search will be successful.

The proposed tracking method is to break all foreground area into pieces small enough so that they will
most likely only belong to one object. If the motion of these small pieces can be accurately determined,
we can then reconstruct objects from the pieces.

174



Levy et al

2 Background Subtraction

Background subtraction is used to limit processing to areas that are likely to have moving objects. The
background subtraction used in our method determines foreground areas with only knowledge of the
previous, current, and next frames. We have tried more complicated background subtraction, such as
the multiple gaussian method in [1], but they typically require too much “warm up” time to be practical
in low frame rate sequences. We decided on a simple substitute method which works acceptably in
sequences with significant frame to frame motion.

The algorithm calculates a difference picture between the previous and current frames, then again
between the current and next frames. To lessen the effects of lighting and shadow, the differences are
calculated as the Euclidean distance between red and blue crominance “points” taken from the

���������
colors of the pixels in question. It thresholds these differences to produce binary images, then uses
connected components to remove small noise, then dilates and erodes to close up small holes in fore-
ground areas. Finally, silhouettes of moving objects are obtained by calculating an intersection of the
two inter-frame differences.

To understand why this works, consider that the difference between two frames will produce an image
of regions that changed between those two frames. Thresholding this difference so that the result is a
binary difference image produces, in effect, a union of moving areas. If we have the motion areas of 3
consecutive frames � , 	 , and

�
, we can use frame differencing to find their unions: ��
�	 and 	

 � .

Then we can recover 	 quite easily by the equation: 	�������
�	�������	�
 � ��� if ��� � ��� . Proof not

shown for brevity. The assumption that ��� � �
� simplifies calculations, and works best when the moving
objects are moving quickly enough that they do not not overlap much of the same area from one frame
to the next. In low frame rate video sequences this is generally the case.

3 Patches

Tracking of objects is similar to object recognition in that we are trying to recognize an object from frame�
in frame

�! #"
. This is especially true in low frame-rate video sequences since it is not assumed that

objects will be found close to their original positions. [2] gives a method for object recognition which
uses small squares of pixels sampled from interest points on an object. Our method for tracking uses a
similar concept for “recognizing” objects from frame to frame, although, instead of selection by interest
operators, all foreground areas are covered by small regions which are then searched for in the next
frame.

These small regions, called patches, are the basic unit of tracking in this method. The creation of
patches is illustrated in the left half of figure 1 As you can see, the foreground region is diced into small
square patches. Notice that not all squares are fully occupied by foreground pixels. We will only be
interested in correlating areas that are foreground so only the pixels in the square that are part of the
foreground will take part in the correlation step.

If a patch has a few pixels that will not be used for correlation, it will still contribute valuable infor-
mation. However, we don’t want to have a patch that consists of only 3 valid pixels. This would not add
any meaningful information, and would only waste memory. In order to strike a balance, patches are
required to have at least half of their pixels be valid foreground pixels. This constraint also carries over
to the correlation process.

After patches are created, they will be correlated with every location in the next frame of the video.
This is, obviously, a time consuming procedure. The cost of performing all these calculations is amelio-
rated by placing two constraints on patch motion. First, a patch cannot move more than half of the image
diagonal length. Second, a patch can only move into foreground areas. Every location in the video frame
that is within the maximum allowable motion distance of a patch’s present location is considered to see
if it is in the foreground. Like the patch creation step, it is not required that the entire location square be
composed of foreground pixels. If the overlap between the mask of the patch and the foreground region

2
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Figure 1: Creation and correlation of patches: Left, generating patches from foreground area. Right,
patch from one frame correlated with next. Foreground overlap highlighted

of the location is more than half the pixels in the patch, the location can be considered as a valid match.
See the right half of figure 1.

The correlation function used to calculate matches is a modified sum of squared differences function.
The squared difference we are talking about will be the square of the magnitude, or Euclidean norm, of
the vector difference between two RGB pixels. That is: $&%')( %* $,+.-0/ '213(4*5176 +98:/ '2;�(�*5;<6 +98:/ '2=&(4*>=?6 + .
Correlation will calculate the mean pixel squared difference, and then normalize it to be between @ and
A
. Thus: B4- A (DC4EGFIH JLKNM7OQPSR ETFUH JVKNW5XYEGZ\[>FIH ]?[<JLK P

^_ O _`<a +?b?b ^ Range -dc @&e A,f . g and h are the color pixels of the patch
and image, respectively. / ' e *i6 is the top left corner of the rectangular location with which the patch is
being compared. j is all /Sk\eml 6 such that the patch’s pixel /Skneml 6 is a foreground pixel, and the image pixel
/ ' 8ok\e * 8:l 6 is also a foreground pixel.

In a normal correlation based search, the patch would be moved to the location in the next frame with
which it had the highest correlation. However, for low frame-rate sequences, it is beneficial to take other
factors into consideration. Instead of choosing the location with the best correlation and moving the
patch there, all correlation results are saved for later when the final decision will be made.

4 Objects

Once patches have had their correlation coefficients calculated with all valid foreground regions of the
next frame of the input video, they can be grouped into objects. Each “Object” structure in the tracking
program should correspond to real world moving objects like people, cars, clouds, etc. This being the
case, it makes sense that the grouping criteria would match the characteristics of a real world object. Two
main assumptions are used to group patches: patches belonging to one object should move in roughly
the same direction, patches belonging to one object should be relatively close to each other.

As was stated previously, patches are not automatically moved to the position with which they have
the highest correlation. Thus, we cannot emphatically determine the position, or motion vector of any
patch. How then shall these patches be grouped into objects? If, hypothetically, each patch was placed
in all locations with which that patch had an acceptable correlation, we could then determine all groups
of which that patch could be a part. Then the best of these hypothetical groups could be chosen. To put
it more directly, make all possible groups, choose the best ones, throw out the rest.

Each hypothetical group will be made so that all patches meet the two criteria of spatial closeness
and motion similarity. The worth of a group is then decided based on how many patches that group has
since more patches mean more total pixels and a more accurate correlation. This is refined to consider
the fitness of match determined by the correlation process for each patch. If a patch could be placed
in several groups, it makes sense to place the patch where it has the highest correlation. Or, from the
viewpoint of the group, Several patches with high correlations is better than more patches with mediocre
correlations. The worth of a group will still be measured by how many patches it has, but weighted by
the patches’ correlation with their locations.

3
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The first step in object creation is to make groups of patches that move with about the same motion
vector. We will call these “Iso-Kinetic Groups.” Making iso-kinetic groups would be easy if we knew
where each patch was going, but since we only have the possible locations of each patch finding the
optimal solution would take exponential time. Fortunately a simple greedy algorithm provides an alter-
native. First, let p be the set of all ungrouped patches. Second, find all q,rtsvuxwzy9{L|�}~ {m���9y9{���p and� }~ {�� }~ r �)�#�5�

. Where ~ r is the main vector of q r and
�

is the maximum acceptable deviance from that
vector. Third, determine q�� such that � q�������� q\rx���3q\r . Fourth, make q�� into an iso-kinetic group and
repeat the entire process until ��p���s�� .

The bulk of the work in this algorithm lies in step 2. Finding all possible iso-kinetic groups is a very
time consuming process, and also unnecessary. The goal is to find groups of patches, so the algorithm
should only check vectors a patch can accept. Thus, ��y { ��p and ��}~ { acceptable to y { we generate a
group q\r of all patches y2{ for which ��}~ { such that

� }~ { � }~ r �)�#�
. Furthermore, if there is more than one

acceptable }~ { , the algorithm tries to find the vector }~ { which is closest to }~ r . The threshold
�

is chosen
to specify how homogenous the motion of patches in a group should be. Small

�
results in groups with

little deviance in the motion vectors, but there may not be a vector upon which patches can agree.
Patch overlap is not allowed. If patches are allowed to overlap, they tend to increase in overlap as

tracking continues. Inevitably the patches overlap completely and become exact duplicates of each other.
This is obviously bad, so the second step in object creation is to rearrange the patches of each iso-kinetic
group to not overlap, but still move in roughly the same direction. That is, }~ { from wzy2{V|�}~ {m� is changed
slightly to }~x�{ such that

� }~��{ � }~ r ���0�
and }~��{ is acceptable to y2{ , but, unlike }~ { , When the patch moves

with vector }~ �{ it will not overlap another patch that has a better correlation coefficient. If no acceptable}~��{ exists, the patch y2{ is deleted. The process of moving weak patches out of the way of strong patches
is repeated until all overlaps are resolved.

The final step of the grouping process to apply a connected components process where connectedness
is defined as the distance between two patches being less than a proximity threshold. Thus, we call
this “Proximate Components.” Each iso-kinetic group q�r is passed through the proximate components
algorithm. A threshold is set that requires a component have a minimum number of patches to become
an object. Otherwise, its patches are deleted. The resulting objects satisfy the two criteria of spatial
closeness and approximate homogeneity of motion.

One happy consequence of using motion as a grouping criterion is that the same grouping process
responsible for object creation can be used just as well for object tracking with a few additional con-
straints. Firstly, most, if not all, of the patches in the object will be in the same iso-kinetic group. The
object tracker will apply the same process used in object creation to the patches that belong to the ob-
ject. It will take the largest of these new “sub-objects” and discard the rest. The object is moved in the
direction these patches took. The patches of the discarded objects are returned to the list of free patches
so they can possibly be made into new objects. This handles the case that a group of real world objects
are traveling close together and then split up.

The second additional constraint is more of a suggestion than a hard rule. In low frame-rate video, ob-
jects do not necessarily have smooth velocity, or acceleration. However, observation of many sequences
shows that it is not uncommon for an object to move in a relatively straight path. Consequently, the ob-
ject tracker will suggest that an object should continue following the same motion vector as it took in the
previous frame. In the iso-kinetic grouping, it will choose the group q r whose main vector ~ r is the same
as the object’s previous motion. If � q�rx� has half or more of the patches of the object, it will determine the
object’s motion. Otherwise, the largest iso-kinetic group is chosen as in the previous paragraph.

After the existing patches of an object have been tracked, newly created patches are added to the
object. The object needs to be able to gain patches in case previously occluded parts of the object come
into view. Patches that meet the two grouping criteria (spatial closeness and motion similarity) will be
added to each object on a first come first served basis. If a patch is close enough to more than one object,
and it can accept motion vectors that are within

�
of the main vectors of those objects, the first object to

claim that patch gets it. The patches in each object are rearranged to fix patch overlaps just like in the

4
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reorganization algorithm given above. Any patches that are discarded in the rearrangement are returned
to the free patches list for later use. This is important since the object tracking phase actually comes
before object creation so that existing objects are able to claim new patches that are rightfully theirs
before new objects are made from them.

5 Occlusion Handling

Any useful tracking algorithm must be able to handle occlusions to some degree. In our method, we start
to handle occlusion when the bounding rectangles of two objects overlap by more than 80%. Meaning,
the overlapping area is 80% of the smaller rectangle. It is not uncommon for bounding rectangles to
overlap by a large amount, even when the actual real world objects do not overlap much, because patches
don’t always fill up the entire rectangular bounds of the object. 80% was found to be a good cut-off
point. If 80% of the smaller of the bounding rectangles is occupied by the other, it is quite likely that
the real objects are occluding each other. We do not check for overlap by finding if the objects’ patches
overlap because if the actual pieces of the objects represented by the patches were to overlap, the result
would be an area that was not similar to any one patch and unlikely to be chosen during the correlation
search, so they wouldn’t overlap anyway.

After determining which objects are overlapped, we decide which object is in front. Obviously we
cannot update the patches of objects that are underneath other objects. Those patches would no longer
represent their object. However, the front-most object can, and should, be updated. The front object is
determined by applying a simple observation. If a real world object is in front of another, most of the
image pixels in the occlusion area will be a part of the front object. If the front object looks sufficiently
different from the rear object(s), then it is reasonable to assume that patches of the front object will have
the best correlation coefficients with their positions in the image. Thus, the front object is the object with
the highest sum of patch correlation coefficients.

Motion prediction is very basic since the objects only exist for a short time and it is hard to build up a
statistically accurate motion model. The front-most object can be tracked, so it is updated with accurate
positions. The velocity of a rear object is assumed to remain constant while it is occluded. Its position is
updated every frame, based on the constant velocity assumption, until it is freed from occlusion. So the
complete occlusion handling mechanism is: First, find objects whose bounding rectangles overlap more
than 80%. Second, determine which object is the front-most object by finding the object with the best
total correlation. Then, objects behind the front object are “put on hold” until they no longer occlude,
and they are tracked using simple constant velocity prediction.

6 Results and Conclusion

These sequences can be downloaded from http://www.cs.ucf.edu/ vision/lowframeratetracking/downloads.html
along with other sequences and results not shown here.

Figure 2: Good results tracking 3 people from overhead view

5
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Figure 3: Objects lost. Failure in background subtraction due to lighting

Figure 4: A simple occlusion is handled well

Tracking objects in low frame-rate video is, unfortunately, not studied or used in the field of Com-
puter Vision. Unfortunate because, as we have shown, it can be done even with primitive background
subtraction and practically non-existent motion prediction models. Objects can be found and tracked
by partitioning the set of patches into iso-kinetic groups, then determining proximate components. This
method could be much more effective if a robust background subtraction method, tuned for low frame-
rate sequences, were employed to give more accurate foreground/background segmentation. As it stands,
the concept of low frame-rate tracking has been demonstrated as a feasible concept, and implemented
with good results.
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Abstract
This paper describes current work on a photo-id system for humpback whales. Individuals of this

species can be uniquely identified by the light and dark pigmentation patches on their tails. We pro-
pose semi-automatic algorithm based on marker-controlled watershed transformation for segmenting
the animal’s tail from the surrounding sea. We propose fitting an affine invariant coordinate grid to
the resulting segmentation. The grid can be adjusted according to the level of occlusion by the sea.
A numerical feature vector capturing the patch-distribution with respect to the grid is then automati-
cally extracted and used to match the individual against the database of similarly processed images.
Keywords: photo-identification, biodiversity, watershed segmentation, affine-invariant coordinate
grid, similarity matching

1 Introduction

Individual identification of cetaceans (marine mammals, i.e. whales, dolphins and porpoises) is of great
interest to marine biologists. Identification plays an important role in their long-term studies of the
population and behavioral patterns of the mammals [1, 4, 6]. The method of photo-identification hinges
on the uniqueness of the natural markings which can be captured by photographing the dorsal fins or
flukes (i.e. tail). Marine biologists discovered more than 30 years ago that humpback whales exhibit
sufficient variation in their natural markings to allow the identification of individuals based on images of
their flukes. As the photographic collections grew, so did the need for more efficient retrieval methods
that would allow a researcher to quickly match new photographs against the image database.

There are several approaches to photo-identification available in the literature. In [6] manually gen-
erated code is used, based on a set of 38 generic fluke patterns which takes into account the shape of
the central notch and the location of blotches/scars. Similarly, WhaleNet [8] is a graphical user inter-
face (GUI) which allows the user to narrow down the search for matches by visually selecting one of
18 fluke types. Araabi extends a curve-matching technique, originally developed for the identification of
bottlenose dolphins [2], for the encoding of the fluke’s trailing edge of humpback whales [1].

The approach proposed in this paper comprises two main steps, namely the extraction of the fluke
region and patches, and the actual matching. While Kehtarnavaz et al. [4] introduced an interactive
live-wire algorithm for the fluke extraction, we favour the use of morphological segmentation tools. And
while [4] introduces affine moment invariants as features, we avoid the use of high order integrals by
constructing an affine invariant grid that is automatically fitted to the tail. To decrease the effect of
different levels of occlusion (submersion) by the sea the grid can be dynamically adjusted according to
the level of occlusion of another tail- candidate for matching. Next, each region is characterized by the
relative contribution of dark and light patches. This maps the visual information into a numerical feature
vector which can then be compared to the feature vectors obtained from other images.
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2 Fluke Patches Extraction

Because the photographic material is typically quite challenging (small colour differences between an-
imal and background, confounding factors such as water splash, highlights on wet surfaces, etc.) au-
tomatic segmentation of the tail is unable to deliver the accuracy required for photo-identification. For
that reason, we have opted for semi-automatic segmentation based on a marker - controlled watershed
algorithm [3].

The watershed transformation is a powerful and well - established mathematical morphology tool for
image segmentation which has been used in many applications [3]. Any gray-level image can be con-
sidered as a topographical surface. Flooding this surface from its minima while preventing the merging
of water coming from difference sources, will result in a partitioning of the image into catchment basins
associated with each minimum. If we apply this transformation to the gradient of an image, we should
obtain catchment basins corresponding to homogeneous gray-level regions. The transform, however,
tends to produce an over-segmentation due to the local variations in the gradient. A marker-controlled
transformation is a solution to this problem. The location and support of the minima is given a priori in
the form of markers, after which the gradient image is modified via morphological reconstruction [3]. In
this way only the most significant gradient edges in the areas of interest between the markers appear in
the final segmentation.

The tail extraction process is initialized by the user, who specifies a rough initial contour (marker)
within the tail. This is illustrated in Fig. 1.

Figure 1: Original image and initial rough marker for the tail.

The watershed transformation is then applied to the modified gradient and automatically produces
an estimated boundary contour for the fluke. Whenever needed, the program interface allows the user
to fine-tune the result by interactively introducing set of additional positive and negative markers. The
noise- and error-prone region at the basis of the tail (due to wave occlusion, water splash, etc.) is removed
by clipping the contour (Fig. 2).

Figure 2: Watershed-based segmentation of fluke (green contour). The fluke is clipped at its base at a
user-supplied point (blue) by fitting a line parallel to the blue line connecting the fluke tips.
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The user is prompted to specify three tail landmarks, viz. the left and right flukes tips and the central
fluke notch. These landmarks have also been used for photo-identification of flukes in [5]. Next, we use
Otsu’s gray-level thresholding [7] on the extracted fluke to obtain an initial segmentation into dark and
light patches.

Finally, the interface supports local thresholding in order to allow the user to fine-tune this patch seg-
mentation in regions of special interest where the global thresholding failed to catch subtle, but significant
details (Fig.3).

Figure 3: Final segmentation result divided in black and white patches used for the identification. The
three landmark points are indicated as green dots.

3 Matching

3.1 Fitting a Coordinate Grid

Images typically exhibit a large variation in viewing angles, distances and fluke inclination. In [4] it is
argued that since fluke surfaces are nearly planar with dimensions significantly smaller than the distance
to the camera, these variations can be modelled using affine transformations such as rotation, translation
and scaling. To be robust with respect to the above-mentioned variability, we therefore propose a coordi-
nate grid that is superimposed on the tail and will divide it into NR regions. The idea is very simple and
straightforward. A triangle LOR (Fig. 4) defined via the three preselected landmarks is constructed.

5

N

RM

O

L

2
8

7
6

14

13

1211

4

10
9

31

Figure 4: Affine grid construction.

The base of the triangle (the line connecting the fluke’s tips L and R) is divided in two equal parts by
the point M . The symmetrical point of M in respect to O, i.e. N is found. Each fluke is then divided
into n parts with lines parallel to the median NM . Thus, the grid delineates NR = 4n − 2 (the tips
are considered single regions) grid regions. These regions are labelled 1 through NR by scanning left to
right, top to bottom. For the grid on Fig. 4 n = 4, NR = 14.

Notice that since the construction is solely based on affine invariant concepts (i.e. middle point,
symmetry, equal distances, parallel lines), the resulting grid is invariant under affine transformations.
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3.2 Feature Extraction and Comparison

After the grid has been fitted to the segmented fluke an NR-dimensional feature vector f = (f1, . . . , fNR
)

is computed. Each element fi equals the ratio of the number of white pixels to the total number of pixels
in the i-th grid region. The feature vector for each fluke image is computed and stored in a database of
features F = {f1, . . . , fN} for all N images of the image database.

The matching process involves a comparison of the feature vector q calculated from a query image
against each entry f in F. This is done by computing the average Euclidean distance per fluke segment

d(q, f) =

√

∑

NR

i=1
Ii(qi − fi)2

∑

NR

i=1
Ii

, (1)

where the indicator variable Ii determines if the corresponding region of any of the pair of flukes to
compare should be considered, i.e.: Ii = Iq

i
If
i
. The indicator equals 1 for all regions above the clipping

line and 0 for the ones which are occluded. Because different regions will be occluded with the different
flukes we need to normalize the distance over the number of regions used for computation of the simi-
larity of any pair of flukes. The images in the database are then ranked based on their similarity to the
query image.

3.3 Adaptive Adjustment of the Grid

The flukes are submerged into the sea up to a different level, therefore the totally or partially occluded
grid regions are not directly comparable. There are two ways of dealing with this problem, namely
ignoring all affected grid regions (i.e. to set Ii = 0) or to adapt their relative size. If the first approach is
adopted one can lose important information from characteristic patches/ markings located in the partially
occluded regions. We propose an adaptive grid adjustment scheme. If the location of the point N is
below the clipping line c ‖ LR, the level of occlusion can be defined as the ratio of the heights of the
similar triangles as depicted in Fig.5: l = hc/h.

h

hc
c

RL

N

Figure 5: Adjustment of the coordinate grid to accommodate the different level of occlusion.

When comparing a query image to a potential match from the database the levels of occlusion may be
different, i.e. lq 6= lf . If the database image has been occluded more than the query, i.e. if lf > lq, to
preserve the area ratio the clipping tail line of the query has to be adjusted to a new height:

h̃q
c =

hf
ch

q

hf
= lfhq. (2)

Analogously if lq > lf , the clipping line of the potential match has to be adjusted. In this manner, it is
possible to use the correct part of the partially occluded regions within 4LNR.

Therefore the final retrieval scheme is modified as follows. Initial matching is performed as described
in Section 3.2. For the partially occluded regions within 4LNR the indicator variable is set to 1. The
query is compared against the whole database. Then the grid adjustment if performed between each pair
of images: the query and the candidate within the top 20 from the initial ranking. During this process the
features are recomputed for the new grid regions and a new final ranking is performed.

183



Elena Ranguelova et al

4 Results

A database of 69 gray-scale images of humpback whale flukes of different resolution and different quality
was available for testing the proposed methodology. The database has been manually processed by
an expert and 32 individuals were identified. For 5 of these individuals there were 3 different images
available (triple) and for the rest (27) there were 2 images each (pairs) in the database.

4.1 Fluke and Patches Extraction

The watershed segmentation provided an excellent contour of the tail for most of the data at one iteration
(immediately after the user specifies the tail marker). For the remaining images (mainly of poor quality),
the user could achieve very good extraction after few iterations of fine-tuning additional markers using
the GUI. The subsequent thresholding produced a very good binary representation of the flukes and the
natural markings. Figure 6 illustrates the performance of the flukes and patches extraction for 2 pairs of
images of the database. It can be seen that the segmentation captured the important markings well.

na0063
1 na0063

2
na0448

1
na0448

2

Figure 6: Segmentation and grid fitting to two pairs of images subject to affine transformation.

4.2 Grid Fitting and Matching

Figure 6 illustrates also the grids (n = 8, NR = 30) fitted to the segmented pairs of images. It should be
noted that salient markings appear in the correct grid region independently of the viewing angle and tail
slant, especially visible for the second pair.

Two matching strategies were tested. The first one ignores all completely or partially (i.e. Ii = 0,∀i :
Ri ∩ c 6= Ø) occluded regions, and no grid adjustment was performed. The second strategy performs
grid adjustment within the top 20 matches obtained after an initial ranking as described in section 3.3.
Although the first strategy is faster as it uses the pre-computed feature database F and no re-computation
is needed, the second one achieves better retrieval results as summarized in Table 1.

Table 1: Percentage of individuals whose true match is ranked among the top k.

Grid adjustment k = 10 k = 3 k = 1

No 94.2 81.1 60.8
Yes 100 84 66.7

Both strategies reduced the number of images which had to be reviewed by the expert by a factor of
7. All images had their true match ranked amongst the top 10 using the grid adjustment strategy. For
more than two-thirds of the database images the true match(es) were correctly identified as the first (or
first and second in case of triples). A more difficult case is illustrated in Fig. 7 where the true match of
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a query image belonging to a pair was ranked third. It can be noted that the “false positives” are still
visually similar to the query image.

Figure 7: Query image (left framed in blue) and first three matches. The true match is framed in red.

5 Discussion

The work reported in this paper addresses two aspects of the photo-identification problem: the segmen-
tation of relevant image information (fluke, patches) and the feature extraction and matching based on
an affine invariant coordinate grid.

The segmentation program has been tested by marine biologists during a Europhlukes Project software
evaluation test meeting, where it had a very favourable reception.

The performance of the matching needs to be confirmed on a much larger database. However, the
methodology is quite generic and can easily be extended to other photo-identification problems (e.g.
dorsal fins for dolphins). Also, our hypothesis is that on a larger database the grid adjustment will
achieve more substantial improvement in the retrieval performance.

The current research efforts are focused on developing a salient patterns detector. The descriptors of
the salient markings in respect to the affine coordinate system, could dramatically improve the recall
specificity.
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EC project-ID EVR1-CT2001-20007). Judy Allen is gratefully acknowledged for providing the images.
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Abstract 
Provided is a critical evaluation of six visualisation models for image database navigation. Difficulties in 
visualising the results produced by content-based image retrieval systems have driven research into finding 
optimal ways of displaying these images so they convey as much information to the user as possible. Initial 
visualisation of an entire database is also a desirable asset which helps browsing through an image 
database as a whole. Research of these systems aims to find a system that integrates fast indexing and 
accurate retrieval with easily navigable and intuitive image database browsing. Accuracy of the displayed 
results are compared to the computational complexity taken to produce a visualisation determining if 
certain systems are realistically suitable for certain image databases.  This paper provides details of the 
attractive features offered by each as well as the drawbacks, concluding in the best available system for the 
features desired. 
 
Keywords: Content-based image retrieval (CBIR), image database navigation, image database browsing,    
                   PCA, MDS, FastMap, picSOM, MARS 3D, hierarchical clustering, global visualisation. 
 

1. Introduction 
 
Content-Based Image Retrieval (CBIR) is playing a major role in image retrieval systems such as those provided by 
stock photo companies. Initially concept based methods were adopted where each image were individually annotated 
and categorised before keyword searching could be performed. This method is still extensively used in many image 
database systems but the need for more detailed, automated and accurate indexing techniques has led to the adoption of 
CBIR which is based on features computed directly from images and a defined similarity between these features 
resulting in a computed resemblance between images which ideally corresponds to the visual similarity humans would 
assign. Properties of concept based methods meant they were able to catch the semantic content of an image by 
assigning descriptive words which (currently) could not be captured using CBIR (although the latter are able to match 
primitive features that are difficult do describe using words). Both are very useful for different reasons and are 
combined in some cases increasing the efficiency of a retrieval system.    
Indexing systems such QBIC [2], visualSEEK [10] or NETRA [7] that use these methods of extracting content features 
generally have good retrieval results but lack when it comes to the facets available for searching. Presently their main 
method of retrieving similar images from a collection is to query by example where a specific image is used to initiate 
the search and retrieval of similar looking images. Other querying procedures such as query by sketch, metadata or text 
have also been investigated but are typically rarely used due to various drawbacks of each method. One requirement all 
‘query by X’  methods have in common is that an initial input is needed to instigate.  Often the precise content of the 
image sought after is unknown, making existing querying methods increasingly impractical: if you don’ t know the 
shape of the object in an image, you can’ t sketch it for querying, and if the colour content is not well known either then 
searching by this method will yield unsatisfactory results.   
Another aspect which has not been extensively researched into is the visualisation of the images returned as the results 
obtained from querying an image database system.  In general, all images and results are displayed in a one-dimensional 
linear fashion, either in rank order after a query or in the order they were read in from the database.  This gives no 
indication to the user of where a certain image can be found unless queried.  When visualising larger datasets, the 
number of images becomes far greater than are realistically viewable on a single screen. Drawbacks like this have lead 
to the research and development of how to arrange the images in such a way that they are positioned on the screen in 
relation to all other images. While this may cause significantly more images to be displayed at once the advantage is 
that all images are visualised at once and clusters of related images will appear which can then be investigated further. 
With the images positioned relative to their similarity with other images, the display gives structure as homing in on one 
area means all neighbouring images will be alike. 
Displaying an entire dataset on a single screen and allowing the user to localise specific areas to home in on creates the 
option of browsing whilst also giving indication of the size of the collection. Navigation can be accomplished through a 
top-down hierarchical approach (through zooming into an area of interest) thus giving more visual information on the 
entire range of the database to the user. Using this approach to visualisation is a widely desired feature by both users 
with personnel image albums and businesses that manage larger image compilations. 
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This paper surveys six methods that have been used to visualise image datasets and introduce the ability to browse 
freely through them. Besides explaining the underlying techniques advantages and disadvantages of each method will 
be highlighted and a recommendation for a useful visualisation system provided. 
 
2. Principal Component Analysis (PCA) 
 
Principal component analysis involves a mathematical procedure that transforms a number of high dimensional 
correlated variables into a smaller number of uncorrelated variables called principal components by reducing the 
dimensionality whilst preserving the ‘essence’  of the data. High dimensional data is normally vast in size and 
ungraspable by the human mind, making some form of representation necessary. Technically this involves the 
computation of the top eigenvectors of the original distance covariance matrix.  This is the most common method of 
embedding axis in a linear combination of the original axis.  In terms of image database visualisation the input data 
typically consists of pairwise relationships between data elements, normally similarities or distances. 
Various approaches exist that perform the operation of finding the bases which best maximise the variance operation; 
the one briefly explained here is based on the relationship between PCA and the Singular Value Decomposition (SVD). 
Initially the mean vector (the 1st principal component) of all samples is calculated and subtracted from each dimension 
(hence resulting in a distribution with the origin as its mean). SVD computes the remaining components by producing a 
diagonal matrix with eigenvalues in descending order. Each singular value from the SVD is proportional to the square 
root of the variances (proportionality constant is the ‘unbiased’  covariance estimator 1/(N-1)). The corresponding 
eigenvectors are the principal components. Once these have been calculated all samples (i.e. images) in the database can 
be projected on the principal components and the projection weights be used for assigning co-ordinates for the display 
of each image, i.e. for the display in a two-dimensional space e.g. on screen the first two principal components are 
exploited. 
Using this linear strategy is more limited than their non-linear counterparts but still hold some advantages.  Results 
shown are reliable, with genuine properties of the original data if the similarity matrix were constructed using the L2 
norm (Euclidean distance). If distances between images are based on any other norm (e.g. L1 norm – ‘Manhattan’  
distance) or indeed any other distance function, the results will not be as reliable which follows from the fact that PCA 
maximises the captured variance in a least-squares Euclidean way. Hence, if accuracy is of interest, further 
configuration rearrangements should be considered as any non-linear correlation between variables is missed out and 
not captured. On the plus side, the mapping of images to display co-ordinates is straightforward. The way to compute 
these positions is very efficient as PCA calculates them using a linear approach, hence the overall computational 
complexity is relatively low. 
 
3. Multidimensional Scaling (MDS) 
 
Multidimensional scaling [5] expresses the similarities between different objects in a small number of dimensions, 
allowing for a complex set of inter-relationships to be summarised in a single figure. MDS can be used to analyse any 
kind of distance or similarity/dissimilarity matrix created from a particular dataset.  
There are two types of multidimensional scaling methods, metric and non-metric. Metric MDS is where the distances 
between the data items are given and a configuration of points that would give rise to the distances is sought, for 
example distances between cities in a particular country would use metric MDS. This perfect reproduction of distances 
is not always possible, in which case non-metric MDS would be used. Non-metric is where the calculation between 
rank orders of similarity Euclidean distances and rank orders in the original space are computed to produce a set of 
metric co-ordinates which most closely approximates their non-metric distances. 
The application of MDS for image database display and navigation was first proposed by Rubner (Rubner et al. 1997). 
Rubner produced a way of not only visualising the retrieved images in terms of decreasing similarities but also 
according to their common similarities. By using non-metric MDS to implant all images by their similarities in a two or 
three dimensional Euclidean space, these calculated distances could be preserved. 
For non-metric calculations a similarity matrix need be obtained from the CBIR techniques previously calculated. 
Euclidean distances are calculated and initially compared using Kruskals’  [5] ‘stress formula 1’ . 

 

 
(1) 

This algorithm expresses the difference between the similarity values ‘S’  and the Euclidean values ‘
�
’  between all 

images. The aim of non-metric MDS is to assign locations to the input data so that the overall stress is minimal. 
Typically an initial configuration is found through PCA as described in the previous section.  While the degree of 
goodness-of-fit after this is in general fairly high it still can be improved. To do so the locations of the points are 
updated in such a way as to reduce the overall stress. If for instance the distance between two specific samples has been 
overestimated it will be reduced to correct this deviation. It is clear that this modification will have implications for all 
other distances calculated. Therefore, the updating of the co-ordinates and the recalculation of the stress is being 

STRESS  =  
"i,j (# i,j – Si,j) 
    "i,j S

2
i,j 
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performed in an iterative way where during each iteration the positions are slightly changed until the whole 
configuration is stable and the algorithm has converged into a minimum where the distances between the projected 
samples correspond accurately to the original distances. Several termination conditions can be applied such as an 
acceptable degree of goodness-of-fit, a predefine maximal number of iterations or a threshold for the overall changes in 
the configuration. Once the calculation is terminated the points can then be mapped onto the screen. 
Navigation through this program starts initially with a global display of the entire database with images positioned in 
relation to how similar they are with all others. From here the user has the ability to zoom into certain regions of interest 
to enlarge and allow for further querying. For each localised visualisation occurrence, the images selected in the area 
have their similarity distances recalculated and projected back into two-dimensional format. This accommodates for the 
enlargement so to occupy the entire screen when displayed. When a region is localised on the distances need to be 
altered in accordance to the new screen co-ordinates to give maximum visibility of the images.  Along with this the 
images need to be sized, both of these are time abundant relating in a time delay each time an area is localised. This is 
not a desirable attribute of the system, as normally it would be expected to happen at real time. 
All other querying methods are still achievable as long as the appropriate CBIR techniques have been implemented.  
Retrieval of images from either a sketch or an example, results in the appropriate images being displayed around the 
selected image in accordance to their similarity. Normally only a certain amount of images, e.g. 15, will be retrieved as 
too many causes clustering to occur and the display of insignificant results. 
Disadvantages of this accurate positioning system are the computation time needed to re-calculate the stress value to 
obtain the best available configuration of points. As it uses a quadratic approach to compute distances etc. it means it is 
computationally expensive, ‘O(N2)’ , where ‘O’  represents the object and ‘N’  the number of items, making interactive 
visualisation of a large number of images unsuitable. 
  
4. FastMap 
 
Another system in which proposes mapping points from a one-dimensional k-d space such that the dissimilarity 
distances have little discrepancies, is the FastMap algorithm [1].  In general this is a computational simplification of the 
MDS procedure based on the geometrical reflection.  Vector projections and distances are updated to a degree of 
accuracy to discover the best configuration of points by iteratively discovering the direction of the strongest component 
vector. 
FastMap aims to display images in a global manner, similar to that of MDS and PCA, where the positioning of images 
depends on the dissimilarities between all pairs of images. Additionally it attempts to improve on existing methods by 
computing the results and then displaying them in a more realistic time scale. CBIR techniques are not required for this 
algorithm to compute; instead the only input required for this to work is the distance function. The FastMap algorithm 
automatically extracts suitable distance features from each object, approximations are made between the interpoint 
distance scores with the results being estimated. This is an unbiased approach which calculates extremely quickly 
especially in comparison to that of completing a full multipoint matrix.   
Linear mapping is used to produce results; the idea behind this is to calculate the properties of two objects (pivot 
objects) that parse through a carefully selected line in n-d space using the cosine law. Pivot objects are ideally two 
objects that are as far apart as possible and are chosen using a linear heuristic algorithm. This process chooses one 
object at random and another by finding the point furthest from it, this found object is then set as the furthest from the 
arbitrary one and both are returned as the pivot objects. This heuristic algorithm is completed until all objects have been 
mapped onto lines. 
When a query by example is performed the pivot objects values are required for knowing the lines of appropriate points 
so the query can be mapped into a point in k-d space. For this reason storage of each pair of pivot objects is required 
after each recursive call. Querying methods are performed at a faster rate than other systems due to its integration with 
highly fine-tuned Spatial Access Methods (SAM) such as R-trees and R*-trees.  All of this are computed linearly to 
keep the computation time down as if it was done by finding the maximum value  of the two objects, there would be 
‘O(N2)’  computations performed instead of just ‘O(N)’  in turn slowing the algorithm down. The results can be extended 
causing the mapping of two objects on a line in 2-dimensional space whilst still preserving some of the distance 
information. For mapping to occur in k-d space, projection of all other calculated distances need to be estimated. These 
can then be placed onto several lines in n-d space by construction, by recursively repeating this procedure results in the 
ability to project these points into k-d space. Computation time is reduced as it is linear on the number of objects it 
requires only ‘O(N)’  calculations, meaning time taken for the algorithm to map a new object onto the display is reduced 
dramatically without significant loss of output precision. 
Using this approximation procedure can give way to some of the approximations being considerably different from their 
acceptable value. This algorithm reduces this degree of inaccuracy but unfortunately results in some discrepancies 
appearing. 
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5. picSOM 
 
A system designed for use with the internet, retrieval of images is conducted through a web browser on databases 
exceeding one million pictures in size. 
T. Kohonen [3] developed a neural network algorithm using Self-Organising Maps (SOM) to manage images into map 
units.  Its uniqueness comes from the ability to run SOM’s concurrently, both to reduce the amount of data by 
clustering, and to construct a non-linear projection of the data onto a low dimensional display.   
Using slightly more advanced Tree Structured Self-Organising Maps (TS-SOMs) as the image similarity ranking 
method can be used for creating a hierarchical representation of the images in a particular database has been approached 
by Laaksonen, Koskela and Oja [6] in the creation of the picSOM system. This prototype system utilises numerous 
content-based image retrieval techniques, either individually or in parallel, to adapt to all different types of database 
from large to small and domain specific to random. For each statistical feature vector used to retrieve images, an 
additional two-dimensional TS-SOM is created; resulting in numerous TS-SOM’s being grouped in parallel for 
calculating the best similarity results. If necessary, additional feature vectors can be introduced and integrated with ease. 
The main advantage is that the user can specify different queries for different features with the system automatically 
computing the input data and retrieving the results dependent on the queries selected.   
TS-SOM’s are a vector quantization algorithm which uses a hierarchical structure as its indexing method where each 
level in the structure contains its own Self Organising Map (SOM). Tree structure consists of an increase in complexity 
the further down you go with each level, the space available is constrained in relation to the content in the above and 
below SOM’s. Using TS-SOM’s instead of SOM’s reduces the complexity dramatically. 
A novel approach used by this system, the picSOM engine tries to learn progressively what the user wants from the 
interaction from previous searches performed. Training the system this way means it can predict, to a certain extent, 
what type of images the user is after. The rationale for this is for each image that is selected as relevant whilst 
searching, similar ones are marked positively and dissimilar ones marked negatively, similar images selected have an 
increase in their relevance weighting. This is done both automatically by the computer and manually where the iterative 
process of selecting or rejecting images is performed by the user. Over a number of searches some image weights are 
increased to an extent that images retrieved on the forthcoming queries should contain these neighbouring images with 
increased weights from the training scheme. Applying a weighting system that helps the user track down images of 
significance before they have been viewed is a great feature not available on other retrieval systems.   
Visualising both the results of querying and general browsing is not very appealing as it uses the one-dimensional linear 
approach to display. For an image retrieval system that deals with significantly large collections of images, analysing 
the database properly is not realistic or will be extremely time consuming.   
 
6. MARS 3D 
 
A novel prototype interaction visualisation approach to displaying image databases is presented by M. Nakazato [8] in 
the system 3D MARS. This system displays the images in a projection-based immersive virtual reality or non-immersive 
desktop virtual reality manner named imageGrouper. This either allows the user to control and navigate through the 
database in a large three-dimensional VR CAVE, by the use of a wand allowing the control of image selection and 
retrieval from the database. This concept allows the viewer to see a stereoscopic view of the space by displaying the 
images on 4 walls, top, bottom, left and right, encompassing the user. There are only so many images that can fit on a 
screen at any one time as the screen size is normally limited e.g. 15”  - 21”  monitor. With large screens surrounding the 
user on four different sides means more images can be visualised at one time in all three of the x, y, and z axis than 
traditional methods (just x and y) as well as images able to be displayed at a greater size. This approach could be 
expanded to accommodate six sides completely immersing the user as if inside a dice and all walls of the dice were 
screens showing the image database. This would allow all visual limitations present elsewhere in other systems as it 
would be like walking through an art gallery. Using a CAVE virtual reality system like this is very unique and expensive 
with hardware equipment not feasibly available by the general user; instead it would be used by specific companies 
with a real need for image database navigation interaction.  
Concept of retrieving the images comes as a result of calculating a similarity matrix for each of the CBIR techniques 
adopted, then finding the distances from a selected image to all other images available. Biased Discriminant Analysis 
[12] is used in calculating the CBIR feature weights. These feature weights are combined and an overall weight is 
assigned to each image with the smaller results perceived as more similar to that of the query image.  
Browsing is available through this system in two ways, either the user has to initially manually search through the 
image database in hope that they will come across a similar image, this occurs when no querying has taken place and as 
the images are randomly positioned there is no structure to where images will initially be placed. Alternatively 
browsing can be accomplished after a query has taken place where images will have some spatial structure. The system 
retrieves all similar images in respect to the query and displays them in accordance to their similarity using colour axes 
stating the directions of the most similar colours. Number of results retrieved can either be specified e.g. 30, or the 
entire rearranged database can be returned. From this point browsing becomes a lot easier due to the colour axes as the 
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three primary colours are used for each direction. If the user browses in one of these directions then images relating to 
that colour can be viewed, the further away they venture from the axis means the images decrease in that particular 
colour. An advantage of this system is the allowance of numerous selections of images for querying performed for one 
particular search. In selecting several images for querying causes the rearrangement of the entire database, hopefully, 
depending on the CBIR techniques chosen, will yield a more accurate representation of the database for viewing. A 
better structure needs to be established to achieve the initial display for browsing as the likelihood of coming across an 
image sought after in a database of e.g. 500,000 is very unlikely. 
 
7. Hierarchical Clustering 
 
Using an automated tree structure and clustering scheme this approach devised by Krishnamachari and Abdel-Mottaleb 
[4] stores groups of similar images at different levels of a hierarchical tree. Top level images of this tree are fairly 
dissimilar allowing the user to choose from a diverse range of images, hence narrowing down the types of images 
sought after. Increasingly going further down the tree refining your search, the images become more alike, this 
eliminates the linear browsing method so abundant on other existing systems. 
Images are initially arranged by assigning similarities between all pairs of images through automatically calculated local 
histograms consisting of 16 rectangular regions. Then, by using a histogram intersection algorithm, computation of a 
single weight for all inter-relationships can be conducted. 
Clustering is organised such that initially each image from the database is allocated as an individual cluster then all are 
indexed sequentially. Two clusters are selected and merged as one by locating the two having the largest similarity 
difference; this reduces the number of unmerged clusters. One of the two is assigned to the left of this newly created 
cluster and named as the ‘ left child’  and the other to the right as the ‘ right child’ . Re-calculation of the similarities 
between merged and unmerged clusters is performed, but not between merged clusters, this reduces computation time. 
Similarity weight of a cluster is calculated from the average of all pairs of images in that particular cluster. This 
sequence of operations is recursively computed until only a single cluster remains. Each cluster ranges in size where the 
further down the tree, the larger the number of images held by each. For every one a representative image is used for 
navigation around the tree, these are selected by choosing the most diverse images from the sub-groups representing as 
many clusters as possible so not to eliminate any further paths down the tree. Browsing takes place by the user selecting 
representative image which in turn returns the lower level cluster of images. If these images retrieved were not sought 
after then navigation back up the tree is possible. Query-by-example still exists in this system with the query histogram 
being compared against each clusters combined histogram finding the best group of images, certain images with similar 
weights from that cluster can then be compared individually to find the similar images. This technique of querying is 
considerably quicker than previous methods due to only a subset of the images being compared for similarity instead of 
the entire database. Results using databases greater than 3500 in size have shown the retrieval accuracy based on this 
approach is high as well as the computational time to complete low. Although browsing of the database is possible, the 
images returned are displayed in a one-dimensional manner causing problems when it comes to large databases. 
Clusters of images can become larger in size and the number of levels in the hierarchical tree becomes so large that 
searching through it becomes a burden. Also it is quite feasible to suggest that some images will be grouped incorrectly, 
mainly because of human perception being different to that of the automated similarity weights that will be assigned to 
it. This results in the image becoming lost unless accidentally stumbled upon while searching in other clusters for 
different images. 
 
8. Conclusions 
 
Mars 3D CAVE system is one novel approach to displaying databases in an interesting and exciting way which can 
make the user feel as if they are part of the database, from this they are more able to interact with it. Ventures like this 
are less available and researched due to the cost of specialist hardware and the impracticality of their size. Searching 
using this method, after training, would be easier, quicker and more productive as the images are displayed like pictures 
in an art gallery, but the problems of global browsing are still apparent as there is no spatial arrangement. Querying 
results from this system are very similar in the layout used by PCA/MDS and FASTMAP making it very easy to use 
and understand but the global view of the database lets the system down significantly. PicSOM is let down by the way 
their results are displayed, one reason for this is it deals with online users who aren’ t willing to wait for the optimal 
display methods to compute. Time to compute a query, even in large datasets, is very low and the accuracy is increased 
with each search due to the difference in the way it indexes images. The relevant feedback algorithm has obviously 
given it a competitive advantage of progressively weighting images not seen by the user but similar to those that were. 
Hierarchical clustering allows for browsing in a linear display approach but does not allow global visualisation of the 
total database. It is quick to compute and retrieves images accurately but becomes increasingly complex with larger 
databases, with clusters and tree levels becoming much larger. This results in a more time consuming search procedure 
for the user as navigation through numerous clusters has to be performed. This approach solves a couple of the 
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problems that are apparent elsewhere but in comparison to the other prototypes researched, the time consideration of 
searching is not as practical. 

 
Fig: 1.1 – MDS display of entire UCID database    
                images [11] 

 
Fig: 1.2 – Localised display of bottom right  
                 region from the UCID database images  

PCA, MDS and FastMap all use the same display technique which can be seen in Fig:1.1, with the difference between 
them being the time taken to compute and the accuracy at which they do this. PCA is the most inaccurate of the three 
with an approach that only computes once to gain the desired configuration. As this is a linear approach the time taken 
to complete the algorithm is very quick and normally can be achieved in next to real time depending on the size of the 
dataset. MDS goes one step further by re-calculating the configuration of points if it is not at an optimal degree of 
precision is reached. This process is computationally a lot slower, mainly because it uses a quadratic iterative algorithm 
approach to its calculations, but the level of accuracy is far greater and acceptable than that of the other methods. 
Because of the time factor, dealing with simple queries like ‘query-by-example’  becomes difficult, especially at run 
time and if dealing with large sets of data.  FastMap goes one step further than MDS by eliminating the time problem 
that burdened it by using linear algorithms to calculate distances between images. The accuracy reached by this 
algorithm is very good but does not quite meet the level MDS achieves, although the difference is minimal.  
There are many desirable features in an image retrieval and visualisation system as seen through the analysis of these 
six systems, each one having their own drawbacks and sought-after features. Visualising images in the immersive cave 
way is an intrinsic method that can engross the user making searching a lot more interesting. Realistically at this 
moment in time they will not be widely used due to cost and size of them, but are more productive in what they can and 
will be able to do. From systems that can be used on desktop computers by all people, the PCA/MDS/FastMap display 
method seems to be the way forward, providing global (Fig:1.1) and localised (Fig:1.2) views of databases with spatial 
relational arrangement. Navigation is considerably easier and the speed at which it can be conducted improves as well. 
Out of the three methods that have adopted this visualising technique FastMap has conquered the drawbacks of the 
other two, even though the accuracy is not as precise as MDS. MDS would only be used over FastMap if accuracy was 
the driving force behind the arrangement of data and the highest degree of accuracy was sort after. 
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Abstract 
In this paper we propose an evolution of Multiobjective Genetic Snakes (MGS) [12] by adding a 
new genetic hybrid algorithm and local search technique in a multiobjective context. We propose to 
use the finite difference method [7] for the local method to keep the energy multiobjective optimisa-
tion. The application context of this work is the noised and bad segmented  images segmentation.  
We  apply this new algorithm on the lip’s contours extraction in real images. The internal and exter-
nal contours of the lips are coded according to the model of double concentric snakes. Two energies 
are used to deform the snakes, the first one is a distance map based on gradient energy. The second 
one is region based and is used to control the deformation. 
This local search algorithm is implement in the classical multiobjective genetic algorithm NSGA2 
[14] with the representation of MGS. It has been tested on noised images of lips. 
 
Keywords: active contours, hybrid algorithms, labial contours, multiobjective optimisation, Pareto set. 
 

1 Introduction 
 

Since their creation [7], active contours have been much modified to respect researchers requirements [6]. This 
evolution has gone on in particular since the creation of levels sets [3,10]. However the problems of active 
contours initialisation is left [4], as well as the energies coefficients determination [8]. The Genetic Snakes 
(GS) [1] represent a solution to the initialisation problem through the global analysis of the image. The Mul-
tiobjective Genetic Snakes (MGS) [12] have been proposed to improve convergence speed and to make ener-
gies determination easier. However, one of the main problems of genetics algorithms is the convergence preci-
sion. Consequently, the MGS doesn’t allow a good segmentation of lips contours in noised images. A common 
solution used to improve this precision is hybrid technique GA and local search [13]. The implementation of 
this kind of algorithm within multiobjective context is a partial one because it only concerns the GA [2].Thus 
we propose an hybrid genetics snakes method with a complete multiobjective implementation by adding an 
algorithm of classical snakes, the finite difference method (FDM) [7].This paper is organized in three others 
sections. The second section describes the genetics snakes chromosome coding and the energies evaluation 
within the Pareto’s principle. The third one presents the local search method, the snakes finite difference 
method, of our hybrid algorithm and its implementation. Section four describes the application of our method 
to the lips contours extraction and shows results.  

192



Snake 1 

Snake 2 

 A  B  C D  E  F

G H I J K L

XA+L*YA

A

B C

D

EF

G
H I

J

KL

Region1 Region2

L

2 Multiobjective Genetics Snakes 
 
In this section we will briefly present here the representation of the Multiobjective Genetic Snakes. This tech-
nique introduce the multiobjective optimisation into a genetic snakes algorithm and the double snakes coding. 
The genetic algorithm principle consists in applying genetic operators (cross over and mutation) on a popula-
tion of chromosomes. Then these chromosomes are evaluated according to the energies of the problem and 
represent the new generation of the algorithm. Each chromosome is composed by genes which are the variables 
of the problem. The values of these variables compose the set of candidates. In the MGS, candidates are the 
gradient and skin image edges obtained by the filter of Canny-Derriche. The chromosomes of the algorithm are 
a set of randomly initialized mouth contours (figure 1). They are composed by the edges candidates and coded 
according to the double snakes model which we’ll present in the next section. The chromosomes evaluation is 
performed by Pareto multiobjective optimisation of gradient and region based energies (section 2.3). 
 
2.1 Double snakes coding 
 
The aim of the double snakes coding is to represent a surface with a hole in a two dimensions approach. Indeed 
the region enveloped by a single contour is not homogeneous its association to a global minimum of region 
based energy is difficult. With the double snakes model, the region of interest can be extracted alone. 
Within this principle, the mouth contours are represented by the inner and the outer contours : 
 

Figure 1. Contours coding 

The position of the nodes of the contours are represented by their index in the image. Both contours envelop 
two regions, the centre of the mouth and the lips. These regions are respectively a minimum and a maximum of 
the red chromatic component. These region energies will be associated to a gradient based energy. 
 
2.2 Multiobjective evaluation 
 
Chromosomes are ranking on the basis of Pareto non-domination. If Ei are the active contours energies, a con-
tour C is called “non dominated” if it doesn’t exist an other contour such all its energies are better. With this 
principle a group of optimal contours (Pareto’s set) can be defined at each generation and a rank can be calcu-
lated for each population contour [15]. At the end of the algorithm the Pareto’s set is obtained. The final step 
consist in selecting the optimal bi-snakes configuration. This configuration can be obtained by minimizing the 
Euclidian distance between the selected contours and the origin of their set. 
 
2.3 Energies 
 
The region based energies are determinate from the image red chromatic component (ImChromatic) and from a 
binary region image (ImBinary). This binary image is calculated from ImChromatic during the preprocessing. 
In the MGS, the region based energies are obtained by filling contours with a morphological algorithm. This 
method needs a large computation time, thus we use here the Green-Riemann’s theorem to estimate the surface 
(defined by the contour {x,y}) integration of the region descriptor D [16].  
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The contour is obtained by the Bresenham’s lines computation between each node. This contours discretization 
induce errors. All pixels belonging to the contours are not taken in account contrary to some pixels not belong-
ing to the region. Moreover, information about the number of pixels belonging to the region is useful to avoid 
contours collapsing. Thus we use the discrete Green’s theorem to fill the region [11] to extract pixels {pi}inside 
the contours. We also define the number of binary pixels N1 (pixels at 1 in ImBinary) inside the contours and 
respectively the number of non binary pixels N0 (pixels at 0 in ImBinary). We use two regions descriptors, one 
relative to the homogeneity (equation 2-a) and one relative to the accumulation of pixels (equation 2-b).  
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Equation 1. Region descriptors 

In equation 2 α and β are weighting coefficients. Within the double snakes model, the region of lips and the 
region of the centre of the mouth each characterized by the two descriptors. The lips region (region 1 in figure 
1) is obtained by removing the centre region (region 2 in figure 1) from that one inside the outer contour. 
The gradient information of edges candidates is not always sufficient and so we define a gradient based energy 
to keep the contour along the lips. We use the classical gradient energy with a density coefficient to favor con-
tinuous succession of edges  :  
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Equation 2. Gradient based energy 

N is the contour size {x,y} and Nedges
 the gradient edges belonging to the contour number. 

3 Local search algorithm 
 
With the MGS representation, we can obtain contours near the energies minima. To improve the convergence 
of theses contours we propose a new hybrid algorithm in a multiobjective context. Our aim is to make con-
verge the chromosomes on local minima. Applying active contours during the genetic algorithm could give 
better configurations and so help the global convergence of the algorithm. Thus, the classical snakes algorithm 
will be applied on a little neighbourhood of each selected chromosome.  
 
3.1 Model 
 
It is usual to apply Hill Climbing Operator (HCO) as local search method in hybrid algorithms. We propose to 
use the classical snakes algorithm [7] to keep a multiobjective deformation. Indeed this active contours algo-
rithm make it possible to use several image energies and integrate cohesion energy into the deformation equa-
tion. This method is based on the resolution of the Euler-Lagrange equation by partial differential equation. 
Thus the total energy is : 
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Eint represents energies of curvature and tension. The external energy represents image energies. Then the de-
formation is performed by the Euler-Lagrange equation (ν(s) are the pixels contours {x(s),y(s)}) : 
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The determination of internal energy coefficients, α and β, is difficult. Some authors have proposed some 
approaches to calculate them in accordance with the first and second contour derivate. Considering the local 
convergence and the computation time constraints we will manually determine the coefficients internal energy. 
External energies are the image forces and so are submitted to the image noise. In order to control 
snake deformation and to improve robustness we use two external energies. The first one deforms the 
active contours and the second one controls the deformation. In noisy images, edges are often fuzzy 
so it is hard to exploit their direction. Thus we define a distance energy (equation 4) between the cur-
rent node and edges candidates. To satisfy a multiobjective energy evaluation the selected edges can-
didates must not deteriorate the region based energy Eregion corresponding to the current contour. At 
this step of the algorithm our aim is to find the local minimum so we search candidates inside a little 
neighbourhood V of the current node.  
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Equation 4. External energy 
 
The region energy Eregion can be the homogeneity one or the  accumulation one. We prefer using the energy of 
homogeneity cause it’s more precise and the risk of collapsing is minimal during this step. This multi energies 
representation is more efficient than a simple weighted sum but its adjustment is more difficult than the Pareto 
representation. 
 
3.3 Implementation 
 
The local search method is used to improve the exploitation characteristic of GA. This improvement is per-
formed by finding the local minimum of chromosomes at each generation of the GA. 
Thus we apply the finite difference method on the chromosomes of the Pareto’s frontier at certain iterations to 
let the genetic algorithm converge near a minimum and to minimize time computation.  
In fact, the principle of the hybrid approach is that GA place contours near the global minimum then the classi-
cal snakes algorithm fall them on the local minimum. 
 
4 Application to lips contour extraction 
 
mouth Images and videos are difficult to segment because the region image is often noised. This noise can be 
due to the tongue, luminosity reflections, etc … . An other noise source is the mouth shape variation. For these 
reasons, lips contours extraction is difficult to automate and is useful in human and computer communication 
systems like AVSR (Audi Visual Speech Recognition) systems, avatars.  
 
4.1 Coding and image preprocessing 
 
We use the double concentric snakes with eight nodes for each contour to modelize lips contours. Image pre-
processing concerns the candidates definition set and energies determination. 
The active contour has to respect the model configuration thus we do not have intersections. To reduce the 
number of possible configurations, nodes have to be rank in the image. For these reasons we have to determi-
nate outer contour nodes evolvement area. The determination of theses areas is based on the centre of the 
mouth [12]. The inner nodes evolvement area is a triangle defined by the outer node correspondent, the follow-
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ing outer node and the mouth centre. During image preprocessing we construct a skin image of the mouth. This 
binary image is based on the HUE image. 
 
4.2 Results 
 
We have test our algorithm on European Data Base M2VTS images (Multi Modal Checking for Teleservices 
and Security applications [9]).Here are some results (figure 22) obtained on fifty iterations with the two region 
based energies and the gradient based one, and with a population of twenty chromosomes. The local search 
algorithm is applied every 10 generations. We present contours on the region image obtained during pre-
processing. On the first lines we show results of MGS without local search algorithm and on the second line, 
the results of our hybrid algorithms apply on the external contour. 
 

a b C d

Figure 2. Examples of final results 
 
The weighting coefficient in the region based energies make algorithm robust to noise on the region informa-
tion. Thus we can see (figures a, b, c, d) that contours can envelop the mouth in spite of the tongue.  On the 
same way figures d and e show that the algorithm is robust to luminosity reflection. On the figures f and g we 
see that we can extract lips contours in badly segmented images. We show (figure 3) the effect of the classical 
active contours during the genetic algorithm. The black doted contour is the current contour obtained by ge-
netic algorithms and the white contour is the result oh the local search algorithm. On these examples, the local 
part algorithm is only apply on the external contour. 

a b c d

Figure 3 . implementation of classical snakes during GA 

We can see that the classical snakes make chromosome converge in a little neighbourhood towards the real 
contours and so fit better the mouth. 
 
5 Conclusion 
 
In this paper we proposed a new implementation of a hybrid algorithm GA / local search in a multiobjective 
context. This new algorithm improves convergence of Multiobjective Genetic Snakes quality and reduces the 
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number of iterations. With this approach we can extract lips contours without being initialised near the lips. 
Moreover, our algorithm is robust to the tongue presence, luminosity reflections and badly segmentation. Nev-
ertheless, more an image is noised and more the number of generations has to be important. 
In our future works , we’ll implement our algorithm on all the M2VTS Database to have quantitative compari-
son between the classical MGS and our hybrid method. 
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Abstract 

This paper proposes an iterative 3-D Euclid reconstruction method by using a series of 

linear camera models and generalised inverse (g-inverse) matrices.  The method starts 

with a conventional linear 3-D reconstruction such as the factorisation method, and it-

eratively corrects reconstruction error due to nonlinearity of captured images under 

Maharanobis distance error criterion.  The linear camera model reduces reconstruction 

error by attaining the minimum mean square error (MMSE) between captured image 

and the image of currently reconstructed shape.  The g-inverse matrices also reduce the 

reconstruction error by compensating for variance and covariance of nonlinear distor-

tion in perspective images of the current shape.  This paper also shows a simple design 

method of the MMSE camera as a technique for camera calibration with results of per-

formance evaluation of the camera model.  Numerical simulation results of the pro-

posed method show considerable reduction of 3-D reconstruction error.  The proposed 

method can also be effective for reducing reconstruction error due to other nonlinear 

image components such as lens distortion. 

 

Keywords :  3-D reconstruction,  MMSE camera model,  g-inverse,  linear framework. 

 

1. Introduction 

Among many 3-D reconstruction schemes from 2-D images,  methods employing Moore-Penrose 

(MP) g-inverse matrix[1] and the factorisation method[2] have beneficial property of averaging and 

reducing reconstruction error due to random noise components in images.  These original methods 

are based on linear camera models such as scaled orthographic or paraperspective cameras[3],  and 

do not deal with nonlinear distortions such as perspective projection and lens distortion.  The dis-

tortions do not show random property but have particular property or tendency described in the 
next paragraph.  Later, the camera model of the factorisation method has been extended to perspec-

tive camera or projective camera at the cost of somewhat decreased effect of random noise cancel-

lation because depth of each feature point of each image is separately estimated [4,5].   

     Figure 1 shows an example of the tendency or property of nonlinear distortions by the arrows 

(i.e. different magnitudes and correlations including their direction) in a perspective image (shaded 
faces with white lines) deviated from an orthographic image (black dotted lines).  Because every 3-

D reconstruction method requires feature point correspondences between 2-D images, it is very 

usual that all 2-D images have a common set of visible feature points (i.e. a common aspect) and 

therefore a common tendency of nonlinearity.  The proposed method in this paper will flatten the 

Fig.1. An example of nonlinear components of a perspective image

which have magnitude differences and directional correlations. Dimen-

sions of the pentagonal prism in [cm] are 10/6 (max/min H), 10(W)

and 7(D). 
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magnitude differences and will de-correlate these nonlinear components to offer an optimum 3-D 

reconstruction within the framework of linear processing.  

  In previous reports, the authors of this paper have proposed a 3-D reconstruction and correction 
method by using a series of g-inverse matrices with error weighting[6],  and have extended the 

method by employing the MMSE camera models[7].  These methods minimise 3-D reconstruction 

error criterion measured by the Maharanobis distance.  

  In this paper, we show further extension of our previous method where it can be incorporated 

with the factorisation method.  In section 2, we formulate the MMSE camera model and show its 

performance.  Section 3 summarises conventional 3-D reconstruction methods.  We illustrate the 
proposed method in section 4 with its algorithm and an estimation method for covariance matrices 

of nonlinear distortion.  In section 5 and 6, we show numerical simulation results of 3-D recon-

struction using synthetic images and real images, respectively. 

 

2. The MMSE camera model 

2.1.  Necessary condition for the MMSE camera 

Let Vk = [Xk, Yk, Zk, 1]T, ( k = 1, 2,···, K,  and  T is transpose) be homogeneous coordinates of the k-th 

feature point, and C be 2×4 affine camera matrix,  then 2-D image uk of Vk is given by
k k
=u CV . A 

necessary condition for minimising the MSE 2
e  between uk and a captured image qk= [xk, yk ]

T, 

22

1

1
K

k k

k

e
K

=

= −∑ u q ,                     (1) 

is given by the following normal equation. 
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C ,  (2) 

where the bars mean the same averaging operation over k = 1, 2,···, K ,  as  Eq.(1).  

Once the inverse of the l.h.s. 4×4 matrix in Eq.(2) is calculated, it is easy to obtain C for every 

captured image.  It is possible to regard this method as a camera calibration technique which ac-
counts not so much for physical camera rig but only for captured image and 3-D shape.   

2.2.  Comparisons with other camera models 
Here, we compare 4 camera models with the same magnifying factor 1.  Figure 2(a) shows example 

images of the Fig.1 object captured from a distance 25[cm] by a perspective camera (shaded face 

with white lines), a paraperspective (dotted lines) and the MMSE (real lines) cameras. Root mean 

squared error (RMSE) [cm/vertex] from perspective image is 0.76 for paraperspective camera and 

0.54 for MMSE camera (71% reduction).  More reduction is available by omitting hidden points. 

  In order to obtain shape independent results,  RMSE of very many sets of 10 random dots in 
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(a) Image examples, gray    (b)MSE[cm] of 10 dots in a cube centred       (c) The same result as (b) but the 

 face is perspective image.   on the optical axis at distances 20~500[cm].     cube edge is on the optical axis.

Fig.2  Comparisons between the MMSE camera(    ) with orthographic(  ), paraperspective(---) cameras.

199



H.Sakamoto, A.Kuwahara and T.Noyori 

103 [cm3] cube is obtained up to 3 decimal digits precision and is depicted in Fig.2(b),(c). They 

show RMSE vs. the distance between camera and the cube centre, where in Fig.(b) and (c) the cube 

centre is 0[cm] and 5[cm] off the optical axis, respectively.  Error of the MMSE camera is about 1/3 
smaller than paraperspective camera without error increase as the cube goes off the optical axis.   

 

3. Summary of conventional reconstruction methods 

3.1.  Method using MP g-inverse matrix 

Relative camera motion (i.e. angles and distances) is calculated using K (≥4) feature points’ coor-

dinates vm,k of M (≥3) captured images, (m=1,2,···,M; k=1,2,···,K) with known feature point corre-

spondences to obtain 2 4×  camera matrices Rm.  Using 3-D point coordinates Vk ,  we have 

1 1,k

k k k

M ,k M

, ,

   
   = = =
   

  

� �

v R

v RV v R

v R

.             (3) 

The MP g-inverse matrix R+
 = (RT 

R
 )-1 RT brings about the MMSE Euclidian 3-D reconstruction. 

[V1,···,VK] = R+ [v1,···,vK],                                   (4) 

3.2.  The factorisation method 

The original factorisation method decomposes an observation matrix Q into an approximated prod-

uct of affine shape matrix SA and motion matrix MA by using singular value decomposition (SVD) 

and truncating its rank to four largest positive singular values σ1,..., σ4 and eliminating the others[3].   

Q ≅ U
 

Σ V
T = (UΣ 1/2 ) (

 

Σ
 1/2
 V

T) = MA SA,           (5) 

where Σ = diag(σ1,···,σ4,0,···,0).  In order to modify SA and MA to Euclidian shape matrix SE and 

camera motion matrix ME, a regular matrix AR is determined so that each pair of camera coordinate 
vectors satisfies orthonormal condition and the centre of the object’s gravity is at the origin.  

Q ≅ MA SA = (MA AR)( AR
-1
 SA) = ME SE .            (6) 

In order to obtain absolute reconstruction error from the true shape, metric reconstruction[8] is 

carried out by an Euclidian transformation matrix AS to have the following camera matrix MS and 

shape matrix SS. 

Q ≅ ME SE = (MA AS
-1)( ASSA) = MS SS .             (7) 

The factorisation method is extended to include projective transformation and perspective cam-
era[4,5].  Because depth for each feature point in each image must be determined, the beneficial 

effect of random noise cancellation would become weaker. 

 

4. The proposed method 

4.1.  Formulation of the method 

By using g-inverse matrices, we can flatten and decorrelate aspect specific property of nonlinear 

distortions (like arrows in Fig.1) to reduce total reconstruction error.  In order to introduce covari-

ance of feature points, we use 
T T

T T T T

1 1K K
,   = =   � �v v v V V V .   Then for all k, Eq.(3) is 

v = B 
V,                            (8) 

where B is a block diagonal matrix obtained by arranging R in main diagonal blocks for K times. 
Here, all elements {Rm} of R should be superseded by the MMSE cameras {Cm}. In our previous 

paper[6], we adopted the exact R of Eq.(3). 

     Because real images v  usually carry observation error e, we modify Eq.(8) to e = −v BV and 

introduce a weighting matrix W to form a criterion for the reconstruction error. 

J(V) = eTW e.                         (9) 
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When the matrix W is an inverse of covariance matrix of e,  J(V) represents  the Maharanobis dis-

tance and the effects of flattening and de-correlating the reconstruction error are available.   

   A  necessary condition for minimising Eq.(9) is given by, 

V = (BT 
WB

 ) -1 BT 
W

 
v .           (10) 

If W is set to identity matrix, the solution of Eq.(10) is equivalent to that of section 3.1. 

4.2.  An iterative reconstruction algorithm 

Using the formulation of 4.1, the following 6 steps algorithm is devised.  

1) In the first step, calculate 3-D reconstruction V[1] by using the MP g-inverse method of 3.1 

where Rm should be obtained by the conventional manner[1], or by using the factorisation 

method where Rm is simultaneously obtained as ME or MS of 3.2. 

2) At the j-th step, compute MMSE camera model C[j] from the shape V[j-1] of the former step 

and the captured images by perspective cameras. 
3) Detect nonlinear distortion of perspective images synthesised by perspective cameras whose 

optical axes have the same directions as C[j] of step 2. Regarding image observation error as 

the sum of the nonlinear distortion and random noise, estimate variance-covariance matrix 

D
[j] of the error.  Set the weighting matrix W[j] to the inverse of D[j].  

4) Obtain updated shape V[j] by using g-inverse matrix of Eq.(10) constructed from C[j] and W[j].  

5) If ||V[j]
−V

[j-1] || / ||V[j] || ≤ ε (ε  is tolerance of conversion),  terminate the algorithm. 
6) Increase j by 1, and go to the step 2. 

    The estimation method for nonlinear distortion component in the step 3) is one of the most im-

portant keys in our algorithm.  For the best precise estimation, we employ orthogonal projection 

matrices to the complementary subspace of the 3-D reconstruction V[j] of the current step.  The ma-
trices can be constructed mainly from three different coordinate vectors of feature points generated 

by linear cameras with Gram-Schmidt orthogonalisation technique.  For details of the orthogonal 

projection matrices, see the reference [7].  

4.3.  Estimation method for covariance matrix of nonlinear distortion  

In order to estimate covariance matrix of nonlinear distortion, we use the following procedure. The 

3-D shape V[j] is rotated on each camera’s optical axis, and at each angle 2π n/N [rad] (n = 1,...,N) 
of rotation, a perspective image is generated by using the camera matrix Rm or Cm of 4.1.  Direction 

of the optical axis is determined by a vector product of rotation part (i.e. left 2× 3 part) of Rm or Cm.  

When the factorisation method is used for the first iteration, each 2× 3 part of MS decides the opti-

cal axis.  The depth of each point measured along the optical axis gives perspective image. 

     Multiplying the orthogonal projection matrix of 4.2 to the perspective image data, nonlinear 

component en is extracted.  Covariance matrix is estimated by 

T

1

1
N

n n

n

c
N

=

= +∑U e e I .               (11) 

where the 2-nd term stands for random noise component and c its variance and I is identity matrix.  

In Eqs.(9),(10), we set W = U -1 in order to obtain Maharanobis error measure. 

 

5. Numerical simulations by synthetic images 
In this section, all 3-D reconstructions are obtained from M = 20 synthetic images from random 

camera positions giving the same viewing aspect of the object in Fig.1.  Some error measures are 

given in equivalent image pixel size where entire image plane is 640×480 pixels.  

5.1.  Models of error in image analysis 
We pick up two types of error : (i) feature point detection error in vk and  (ii) camera angle estima-

tion error in Rm and ME or MS,  and suppose that their probability distributions are uniform (for 
point error) and normal (for angle error), respectively.  In the following subsections, we will invest 

two cases : (I) two types of error vary independently and (II) they vary dependently.   
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5.2.  Two examples 

Here, the range of error (i) is set to ±0.5 pixel, and the error (ii) has standard deviation (SD) of 2 
degrees.  Figure 3(a),(b) show 3-D reconstructed shapes by the proposed method and the former 
method [6].  It is clear that significant error reduction is available by the proposed method.  If the 
hidden points were omitted, better camera calibration and reconstruction results are available.  

5.3.  Systematic experiments 

In this subsection, we synthesise 500 random sets of M = 20 synthetic images of the same aspect of 

the object in Fig.1 captured from a sphere of radius r [cm] and obtain statistical (averaged) results.  

5.3.1.   Comparisons with a conventional method 

Figure 4 shows averaged reconstruction error [cm/vertex] of the proposed method (―) and the 

conventional ( g-inverse) method [1] (─ ─) vs. the radius r [cm].  In Fig.4(a), error model (I) is em-

ployed, where the point error (i) is fixed to ±0.5 pixel and the angle error (ii) has SD of 2(curve □), 

4(curve ×) and 6(curve ∆) degrees, respectively.  In Fig.4(b), we use error model (II), where er-

ror(i) and error(ii) have the relation that (ii) = 2×(i).  The pair of (error(i), error(ii)) is set to  (±0.5, 

±1)(□), (±1.5, ±3)(×)  and (±2.5, ±5)(∆), respectively. 

5.3.2.   Comparisons with the former method 

In Fig.5(a), we compare averaged 3-D reconstruction error [cm/vertex] by the proposed method 

(―) and the former method (─ ─) [6].  Employed noise model and noise level settings are the same 
as Fig.4(b).  Fig.5(b) shows averaged iteration counts required to obtain the results of Fig.5(a). 
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Fig.4.  Mean reconstruction error [cm/vertex] vs. distance r [cm] between camera and object. 
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Fig.5  (a). Comparisons with the former method,    (b) averaged iteration counts. 

 

Fig.3. Orthographic images of reconstructed 3-D

shapes by 20 perspective images captured from

the directions of arrows at the distance 28[cm].

Mean error[cm/vertex] of 3-D shape by the former

method [6] (─ ─) and the proposed method (─)

from the true shape (---) are : (a) 0.92 and 0.63

(68% reduction); (b) 0.92 and 0.72 (79%), respec-

tively. (a) (b) 

(a) (b)

(a) (b)
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6. Numerical simulation by real images 

Here, we capture M = 33 real images of Fig.6.  Using the factorisation method[2], 3-D shape is ob-

tained by Eq.(7) in the step j = 1 of 4.2.  3-D shape of this step is depicted by broken lines in Fig.7, 

where construction error is 0.8100[cm/vertex].  The true shape is drawn by dotted lines. 

     Figure 8 shows an error converging process of the proposed method.  Only 4 iterations are re-

quired for the 4 digit convergence to 0.5433[cm/vertex].  Error reduction rate is about 2/3.   

       

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

 

7. Conclusions 
In this paper, an iterative method is proposed for reconstructing 3-D shape from many 2-D images. 

Starting with a conventional reconstruction method, the method employs a series of the MMSE 

linear camera models and a series of g-inverse matrices with Maharanobis distance.  The numerical 

simulation results show that the proposed method reduces reconstruction error significantly.  

  The merit of the proposed method is that the method is effective not only to perspective 

nonlinear distortion but also to other nonlinear effects such as lens distortion.  
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Fig.6.  Real images of the 

object employed (height = 

15[cm], bottom =102[cm2] 

square) .   

Fig.7.  Three views of a metric recon-

struction.  The true 3-D shape(---), 

reconstruction by the factorisation 

method[2] (─ ─)  and by the pro-

posed method (real line).  Broken 

lines show bended peak and bot-

tom parts due to nonlinear distor-

tions of perspective images of this 

aspect. 

Fig.8.  An example of error convergence

property of the proposed iterative method.  

  Ordinate : averaged reconstruction error

[cm/vertex],   abscissa : iteration count. 
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Abstract

In this work, a combined statistical and image analysis method to automatically evaluate the
severity of scaling in psoriasis lesions is proposed. The method separates the different regions of
the disease in the image and scores the degree of scaling based on the properties of these areas.
The proposed method provides a solution to the lack of suitable methods to assess the lesion and
to evaluate changes during the treatment. An experiment over a collection of psoriasis images is
conducted to test the performance of the method. Results show that the obtained scores are highly
correlated with scores made by doctors. This and the fact that the obtained measures are continuous
indicate the proposed method is a suitable tool to evaluate the lesion and to track the evolution of
dermatological diseases.
Keywords: psoriasis, exploratory data analysis, segmentation, decision trees, classification.

1 Introduction

One of the main problems in the treatment of dermatological diseases is the difficulty of tracking the
evolution of the disease. Physicians are visited by the patients several times to control the evolution of
the disease. However, due to the fact that no objective methods to summarize the lesion exist, physicians
make scorings and take notes to document the actual condition of the patient. A drawback of this method
is the dependency on the individual physician.

The advances in image analysis during the last decade have lead to the development of different
methods to deal with related problems in the dermatological field. Engstr¨om [1] observed the effect
of a new enzymatic debrider observing the evolution of the lesion area and the lesion color. Later,
Hansen [2], developed an image system that included calibration for increasing the quality of the images.
The system diagnoses burns and pressure ulcers in animals but the possibility of being used in humans
was mentioned. In a recent paper, Hillebrand [3] used computer analysis in high resolution digital images
to compare the skin condition of a group of females.

In this work, a method to objectively score the degree of scaling in psoriasis is proposed. The method
realises a hierarchical segmentation to isolate the different structures present in the image. Different
values are obtained from these areas and a classification tree is built to correlate these measurements
with the doctor scorings.

2 Segmentation of the areas present in the lesion

Psoriasis is a dermatological disease characterized by red, thickened areas with silvery scales. In order
to score the degree of scales in psoriasis, the first step is to segment the different areas in the lesion.

∗The dermatologists Lone Skov and Bo Bang of Gentofte Hospital of Denmark and the anonymous patients
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Figure 1: Top row: Two psoriasis images. Second row: Difference between the blue and green bands.
Third row: Histogram of the blue minus green bands. Bottom row: Lesion segmentation result.
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2.1 Segmentation of the lesion

The segmentation of the disease with respect to the healthy area is based on the assumption, that under
a suitable projection, both the normal skin and the lesion are distributed approximately as a Gaussian
distribution. This assumption was supported by an exploratory data analysis of a small set of psoriasis
images where several projections were considered. Furthermore, a principal component analysis [4] and
an independent component analysis [5] on a dataset of 115 images indicated that the difference between
the green and the blue band exhibits a good contrast to discriminate between the lesion and the normal
skin. The distribution of this difference approximately follows a linear mixture of two Gaussians. The
estimation of their means and variances makes it possible to identify the lesion by means of discriminant
analysis. The parameters of the gaussians were estimated according to Taxt [6]. Figure 1 shows the
segmentation of the lesion.

2.2 Extracting the scales

Segmentation of the scales is complicated by the fact that scales may or may not appear in the image.
If they appear they may range from a few spots to a large area. Moreover, non-uniformity of the areas
with redness (ranging from red to brown) makes the task even harder. This variability implies that the
lesion has to be considered in small areas where the change in redness is not significant. This can be
accomplished with watersheds [7] to mark the different scales and then locally use a clustering algorithm
to segment them. This approach requires specifying the number of watersheds. In this work, the number
of watersheds is determined in two steps. First a new image is created based in the watershed regions.
Each watershed area is replaced by the minimum value of this area. This new image is then thresholded
and the watersheds with values less than the threshold are the areas where the scales are detected. The
method was tested on a set of psoriasis images and it demonstrated a good performance. However, the
method had difficulties with some images that had problems during acquisition (especially shadows), so
the number of watersheds was not found correctly. To solve this problem, the number of watersheds was
fixed visually by a tuning parameter. The blue band was used to find the watersheds because a canonical
analysis had shown that this band is the best to separate the scales from the red area. Figure 2 displays
the segmentation of the scales.

2.3 Scoring the disease

Once the different areas have been segmented, a decision tree is created to automatically classify the
different images approximating the scorings made by the physicians. Three variables are used as input
to the model: the area of the scaling, the ratio between the area of scaling and the area of the lesion, and
the ratio between the area of scaling and the area of redness. The whole procedure is shown in Figure 3.

2.4 Experiment: Scoring the disease

In collaboration with the dermatological department of Gentofte Hospital in Denmark an experiment
was conducted. The goal of the experiment is to objectively score the severity of the scaling in psoriasis
images. To accomplish this goal, a set of 46 psoriasis images was selected from a database of psoriasis
collected from different patients. The physicians scores of these images was also available. The images
were selected to cover the maximal possible diversity. The different areas of each image were extracted
according to the procedure described in the previous sections and the above mentioned three summary
values were obtained. A cross-validation process was used to build 23 decision trees. These decision
trees utilized 44 data points to build the tree and two for testing it. Results showed that the first variable,
the area of the scaling, is enough to explain the physicians scoring. The automated scoring with our
method has proven reliable, and on several occasions even allowed for corrections of physicians’ mis-
takes. In these cases, the physicians were asked to re-score their previous judgements, and in all cases
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Figure 2: Top row: The original lesion. Second row: Scaling markers. Third row: Scaling segmentation
result. Bottom row: A clear display of segmentation on top of the original image.
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Figure 3: diagram of the method.
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Figure 4: Left: Decision tree for the scoring given the parameters of the segmentation. Right: Depen-
dency of lesion area on physicians’ scoring of the lesions

the assessment was changed. Figure 4 left shows the final tree generated using all the points. Figure 4
right plots the area of the scaling versus the physicians’ scoring.

3 Summary and conclusion

In this work, a procedure to evaluate the severity of the scaling in psoriasis has been developed. The
method automatically separates the different parts and extracts different parameters. In certain difficult
cases such as uneven illumination it has been noticed that, allowing a manual interaction increases the
accuracy notably. The method provides objective measures that avoid the dependence of the physician
in the tracking of dermatological diseases. It has been shown that one of the provided measures is highly
correlated with the doctor scoring. Together with the other two measures we expect to be able to provide
a better lesion description.
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Abstract

Optical snow, introduced in [4], is a new category of motion for highly cluttered scenes in which
no spatial continuity can be assumed. Since no smoothness constraint can be imposed on the velocity
field, traditional optical flow methods can no longer be used [1]. However, a model of optical snow
has been proposed in [5] and algorithms based on this model were suggested using an analysis in
the spatio-temporal frequency domain [5, 2]. This model assumes lateral motion and can be used to
solve the 3D camera motion problem by decomposing sequences in sufficiently small patches [7]. We
would like to use the same model to find arbitrary camera motions globally instead of using patches.
In the present paper, we introduce a complementary model for purely non-lateral optical snow. The
standard optical snow model and this complementary form could lead to a new global approach for
solving the general egomotion problem. We show how non-lateral optical snow sequences can be
rectified such that standard methods to analyze optical snow can be applied. The effectiveness of the
method is shown for both real and synthetic sequences.
Keywords: Optical snow, Egomotion, Fourier transform, Motion analysis, Optical flow

1 Introduction

Most studies assume a unique velocity at each point in the visual field [1]. This assumption is only valid
if the depth map is continuous. If an observer moves in a 3D highly cluttered scene, a forest for instance,
this assumption no longer holds; branches and leaves at many depths cause discontinuities in the motion
field. Such cases can be solved by a human observer [10]. However, these scenes are hard to solve since
feature points cannot be tracked and since traditional optical flow methods cannot be expected to recover
an image velocity.

Recently, [4] introduced a new category of movement called optical snow which generalizes optical
flow by abandoning assumptions of spatial continuity. A model to analyse optical snow induced by all
one-parameter set of velocities has been proposed in [5]. Taking the whole sequence in consideration,
this model allows for lateral observer motions only [5]. Since the image velocity field can locally be
approximated as a sum of two fields, a parallel field due to camera translation and a constant field due to
camera rotation [9, 7], it was showed in [7] that this model could be used to recover 3D egomotion by
subdividing the image sequence in sufficiently small patches.

We suggest a more global approach without the use of patches. In this paper, we analyze purely non-
lateral observer motions and present a method to rectify these sequences such that standard optical snow
methods can be applied. Finally, we give some experimental results.
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(a) (b)

Figure 1: (a) Bowtie signature in the frequency domain (b) Eigenbasis of bowtie signature

2 Previous works

2.1 Optical Snow

The model of optical snow defined in [4, 5] is an extension of the motion plane property [11] which
states that an image pattern translating with uniform image velocity produces a plane of energy in the
frequency domain. Formally, let

�����
	���	�
��
be a time varying image. If an image patch is translating by������	������

, we know from [3] that this velocity is constrained by

����� �� ��� ����� �� ��� � �� 
���� (1)

This constraint, transposed in the Fourier domain, yields the following equation:

 "!�#�$ �����&%�� � ���'%�� � %�()� $+*���,%���	-%��&	-%�(.� ��� (2)

where *���,% � 	-% � 	-% ( � is the Fourier transform of
�/�,% � 	-% � 	-% ( �

. As noted in [5], equation 2 implies that
all frequencies *�����
	���	�
��10�2� lie on the plane����%�� � ����%�� � %�( ����3 (3)

This model was extended in [4] for the case in which there is a one-parameter set of velocities within
an image region, i.e. where velocities vary according the following equation:��� � 	�� � � � ��4 � �65 
 � 	�4 � �65 
 � � (4)

where
4���	�47�8	�
)��	�
9�

are constants and 5 depends on the visible depth at point (x,y) [5].
Substituting Eq. 4 into Eq. 3 yield a family of planes in the frequency domain,��47� �65 
9�8�:%�� � ��4�� �65 
9���:%�� � %�( �2��3 (5)

Thus, this model produces a set of planes in the frequency domain. This set of planes forms a bowtie
(see Fig. 1) and follows the two following propositions:

Proposition 1: The planes of the bowtie intersect at a common line, called the axis of the bowtie, that
passes through the origin.
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Proposition 2: The axis of the bowtie is in direction
�  
 � 	�
 � 	�4 � 
 �  4 � 
 � � 1. By normalizing

��
 � 	�
 � �
,

this direction becomes
�  
��&	�
9��	';=<>; ?A@CBD�CEF��� , where

E
is the angle between vectors

��
���	�
9���
and

��4���	�47���
.

Applied to the egomotion problem, it was noted in [5] that Eq. (4) corresponds to�����G	������ � �  IH � �65 
)��	 H � �65 
9��� (6)

In other words, camera rotation generates a constant velocity component
�  JH �&	 H �K� for small field of

views ( L ! �&M ) and lateral translation
��
���	�
9���

generates a velocity inversely proportional to depth. Com-
ponents HON and


 N were assumed to be 0. Therefore, this model cannot recover arbitrary camera motions.
The main contribution of this paper is to show that complementary camera motions, i.e. following

components H�N and

 N (all other components assumed to be 0), produce non-lateral optical snow se-

quences that can be rectified to be analyzed by existing optical snow methods. We will describe how to
find components H N and


 N .
3 Motion Field

The motion field equation contains 7 variables which are the depth P N at each pixel, the translation vector��
 � 	�
 � 	�
 N � and the rotation vector
� H � 	 H � 	 H N � .

More precisely, the velocity field for a pixel (x,y), as defined in [6], is:������	������.Q � RTS � S � H �  �:U � S �� � H � � S � H
N ��VXW (ZY[ Y  ( W[ Y�:U � S �� � H �  S � S � H �  S � H N � VX\ (ZY[ Y  ( \[ Y^]
By assuming that only P N , 
 N and HON are non-zero, we are left with:������	������.Q � R S � HON ��VXW (ZY[ Y S � H
N � VA\ (ZY[ Y ]
Note that rotation component H_N is perpendicular to translation component


 N for each pixel (x,y), and
that H N is independent of depth. From this observation, rectification is performed on image sequences to
obtain optical snow motion

� � 	 H_N � �65 ��
 N 	 � � .
3.1 Motion Field Rectification

The rectification is a polar transformation around the FOE [8] which is the image center in our case.
First, we rectify the motion field induced by pure H`N rotation. Consider a point

S
located in the image

at (1,0) on the camera projection plane (see Fig. 2-a). The path followed through time by
S

for a pureH
N movement is a circle of radius 1, and its speed is exactly equal to
; HaN ; . The rectification is done by

“unfolding” images such that this circle becomes straight and vertical, as shown in Fig. 2-b. For a field
of view of b�� M and images of size cedfc , the vertical length of the rectified image is !�#1g � � # c pixels.
Note that flow lines of a pure forward motion become horizontal. The velocities in the rectified motion
field correspond to

���Gh� 	��Kh� � Q � � 5 
 NKi S �� � S �� 	 H N � Q .
Standard optical snow produces velocites that only depend on depth. However, the velocities in recti-

fied non-lateral motion sequences vary according to depth and to image position. Therefore, horizontal
lines in the rectified sequence must be resampled according to factor

�j VAkWml VAk\ , where (
S �

,
S �

) is the posi-

tion of a pixel on the camera projection plane in the original sequence. In theory, we get infinite sampling
at center (0,0). In practice, we do not rectify near the image center as illustrated in Fig. 2-c. Notice that
image corners are cut to remove empty spaces in the rectified sequence.

1For simplicity, all equations in this paper assume image sequences of equal dimension in space and time.
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(a) (b)

(c) (d) (e)

Figure 2: (a) Original motion field (b) Rectified motion field (c) Rectified region of the original sequence
(d) Original frame (e) Rectified frame

3.2 Finding rotation n N
The bowtie axis can be computed from the rectified sequence using Principal Components Analysis as
described in [2]. For standard optical snow, the angle

E
in the bowtie axis equation (see Proposition 2) is

unknown. For non-lateral optical snow, however, we know that
E �2b��oM . Hence, the bowtie axis equation

becomes
� � 	XU�	 HON � . Thus, the third component of the bowtie axis gives us HaN directly with speed given

in pixels/frame in the rectified sequence. The rotation given in degrees, for a field of view of b��/M , is thenp�q �sr Yt g .
The bowtie axis can also be found using the best fit plane [2]. Let

��B_��	�Bu�&	�B N � be the normal of the
best fit plane # . Since


 N is the only component affected by depth, the bowtie axis is the line on the best
fit plane in direction

� � 	XU�	  wv \v Y � .
3.3 Finding translation x N
From Eq. 5, and since


 N generates only horizontal velocities and H`N only vertical velocities, planes form-
ing the bowtie have equation

� 5 
 N 	 HON 	XUA� . The best fit plane # is defined as
� v Wv Y 	 v \v Y 	XUA� � � 5 
 N 	 H
N 	XUA� ,

where 5 is the weighted “average” of the slopes of the motion planes that compose the bowtie. The
weights depend on depth distribution in the scene as well as image contrast contributed by each object.
Since this information is unknown, we can only compute


 N up to a scale factor 5 .

4 Experimental results

To evaluate our method, we rendered several synthetic image sequences of scenes containing lambertian
spheres (see Fig. 3-a). Image motion was generated by moving a camera ( b��oM field of view) through the
scene with various


 N and HON parameters.
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Table 1 shows results for various rectified sequences. The last two rows correspond to real image
sequences, respectively the lab sequence (see Fig. 3-b) and the plants sequence (see Fig. 3-c). The HJN
component is found almost exactly. The running time is about 1.6 seconds for 128x128x32 sequences
on a 1.3GHz AMD Athlon machine.

(a) (b) (c)

Figure 3: (a) Synthetic scenes were constituted of small balls at different depths (64 frames of size
128x128 pixels). (b) Lab sequence taken from a camera rotating around the z-axis (40 frames of 128x128
pixels). (c) Plants sequence taken from a camera making a forward motion (32 frames of 128x128 pixels).

Table 1 : Results for synthetic and real scenes
True Rotation True Translation Rotation Found Translation Found
(degrees/frame) (pixel/frame) (up to a scale factor)

0.00 1.00 0.00 0.15
1.80 0.00 1.78 0.00
1.80 1.00 1.81 0.22y ��3=z�� y ��3{��� 0.35 -0.05y ��3{��� y ��3=|�� 0.00 0.31

4.1 Comparing the eigenvalues

When analyzing image sequences globally, we would like to estimate how well the motion fits the optical
snow model, i.e. if a bowtie is present. For instance, an unrectifed forward motion or a rectified lateral
motion do not produce a bowtie signature. For such cases, the motion field features velocities oriented
in all directions. Detecting these situations would be a great benefit.

In [2], depth range is evaluated by comparing the two largest eigenvalues of the Principal Components
Analysis method. We can adapt this measure to detect the presence of a bowtie. The ratio of the first two
eigenvalues } � and } � has a maximum of 1 and should decrease as we get closer to a bowtie signature. In
fact, the presence of a bowtie creates a high power concentration along its axis which increases the first
eigenvalue. The absence of a bowtie is caracterized by a uniform power distribution which makes } � and} � almost equal. Fig. 4-a shows a plot of ~ k~�� as a function of � ( Y �� Q � for rectified sequences. As expected,

the ratio falls off as the bowtie takes shape in the frequency domain. Fig. 4-b shows ~ k~�� as a function of� (ZY �� Q � for non-rectified sequences. As expected, it increases linearly up to 1 as bowtie signature disappears.
The sequences used for these graphs have random translation vectors of unit length.

Notice that the curve in Fig. 4-a decreases non-linearly while the other one is linear. This might be
caused by the subsampling during rectification which accentuates the effect of any lateral motion. This
is still under investigation. These curves, if modelled correctly, would allow merging non-lateral and
lateral motions analysis into a general egomotion estimation algorithm.
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Figure 4: (a) ~ k~�� as a function of � (ZY �� Q � for rectified sequences. It starts at 1 and decreases as a bowtie

signature takes shape. (b) ~ k~ � as a function of � (ZY �� Q � for non-rectified sequences. It increases linearly up to
1 as bowtie signature disappears.

5 Conclusion

This paper presented a method to analyze purely non-lateral optical snow by introducing a rectification
process. Results show its accuracy and efficiency. We hope to solve the general egomotion problem in a
global approach using this scheme.
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Abstract 
For surveillance systems that use data from multiple cameras the compass direction of 
each camera is a useful piece of information. It provides constraints on the topology of 
the camera network, and can limit the search space of algorithms looking for object 
correspondences across different cameras. This paper presents an approach for 
inferring the compass direction of a camera from the shadows of moving objects in a 
video sequence. The Sun’s position is calculated using celestial mechanics, which 
requires the user to provide the date, time and geographic location at which the video 
was shot. The point on the horizon towards which all shadows on the ground appear to 
converge is located robustly. By combining these two pieces of information it is 
possible to determine the camera’s compass direction. The technique has been 
successfully tested on a number of video sequences of people walking. 
 
Keywords: Camera orientation, shadows, surveillance. 
 

 

1 Introduction 
 
An emerging area in the field of Computer Vision is the automatic correlation of information 
obtained from multiple cameras with non-overlapping fields of view [2][7]. This task can be 
simplified if something is known about how the various cameras are positioned relative to one 
another. This paper describes an approach for finding the compass direction of a camera using the 
shadows cast by moving objects in a video sequence of an outdoor scene. Knowing the direction in 
which different cameras are facing, e.g. North, South, East or West, allows us to relate the 
information obtained from these cameras. For example, if two cameras are positioned as shown in 
Figure 1(a) a person appearing in camera 1 will move into shot of camera 2 from the left, whereas 
in Figure 1(b) they would be expected to enter camera 2’s shot from the right. Having such 
information available could be used, for example, to limit the search space when looking for 
corresponding objects, e.g. people, across multiple cameras. 
 

 
Figure 1: Difficulty of tracking when camera directions are unknown 
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1.1 Related Work 
 
A substantial amount of research has been undertaken in the area of identifying shadows in images 
and video sequences [6][5][3]. A comparative evaluation of the main techniques can be found in 
[10]. The task of finding the camera’s orientation relative to the scene has also been explored 
[8][1]. These techniques are, however, restricted to man-made scenes in which a large number of 
straight edges, e.g. buildings, are present. Our goal is to infer the camera’s orientation to the scene 
from the shadows we observe. Combining this information with techniques from Astronomy for 
calculating the Sun’s position will yield the camera’s compass direction. 
 

2 Astronomy 
 
In order to infer the camera’s compass direction it is necessary to know the position of the Sun in 
the sky for a given date, time and geographic location (specified by latitude and longitude). For our 
purposes we need the Sun’s position in horizontal co-ordinates. These are specified by its angle 
above the horizon (altitude) and its angular displacement from South, travelling “around” the 
horizon (azimuth). (The Sun’s azimuth is 90° when it is in the West.) 
 
The position of the Sun must first be calculated in equatorial co-ordinates, which reference a point 
on the celestial sphere, an imaginary sphere that has the Earth at its centre. The first step is to 
calculate the Julian date (JD) for the date and time of interest. This is simply a continuous count of 
days and fractions of days since noon Universal Time on 1 January 4713 B.C. (on the Julian 
calendar). The Sun’s equatorial co-ordinates, its right ascension (RA) and declination (d), are 
determined as follows [13]: 
 tan RA = cos E sin L / cos L (1) 
 sin d = sin E sin L  (2) 
where 

E = 23.439 – 0.00000036 D 
D = JD – 2451545.0 
L = q + 1.915 sin g + 0.020 sin 2g 
g = 357.529 + 0.98560028 D 
q = 280.459 + 0.98564736 D 

 
The observer’s latitude (Lat) and longitude are then used to find the Sun’s altitude (Alt) and 
azimuth (Az) [9]. Note that longitudes East of Greenwich are taken as positive. 
 LST = 280.46061837 + 360.98564736629 D + longitude 
 HA = LST – RA 
 sin Alt = sin Lat  sin d  +  cos Lat  cos d  cos HA (3) 
 tan (Az + 180) = (– sin HA) / (cos Lat  tan d  –  sin Lat  cos HA) (4) 
 
The algorithms presented above are accurate to approximately 1/30th of the diameter of the Sun’s 
disk, which is more than acceptable for our purposes. 
 

3 Shadow Identification 
 
Shadows of moving objects are identified using the technique described in [12]. Firstly, both 
moving object and shadow pixels are identified using background subtraction in RGB colour space. 
Next, some of these pixels are classified as shadow. The criteria that such a pixel must meet are: 
� its luminance must drop (by a limited amount) AND 
� its saturation may rise only very slightly 

Two parameters are required to use this algorithm. The first, required by the background 
subtraction technique, specifies the maximum amount by which the pixel under consideration can 
differ (in each channel) from the background before it is regarded as an object or shadow pixel. The 
second gives the maximum percentage amount by which the luminance may drop for a shadow 
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pixel. In order to remove isolated noise points produced by the shadow detection algorithm it was 
necessary to blur both the background image and the video sequence. A simple averaging operation 
with a neighbourhood size of 3 was found to remove the vast majority of noise points (Figure 2). 
  

 
Figure 2: Background (a), current frame (b) and objects and shadows found (after blurring) (c) 

 
A further problem was the occurrence of “false shadow” pixels surrounding the moving objects. 
Because such areas were very thin they were easily removed by applying an “opening” operation to 
the image of shadow pixels (Figure 3(b)). 
 

   
Figure 3: (a) Original binary shadow image and (b) results of opening to remove “false shadow” 

(c) Shadow regions (from a different frame) overlaid with their associated directions 

 

4 Shadow Direction 
 
All shadows cast onto the ground by vertical objects are essentially parallel, by virtue of the fact 
that the Sun is at a very great distance from the Earth. Such shadows have the same compass 
direction (azimuth) as the Sun. They appear in a 2D image, if extended along their direction, to 
meet at a point on the horizon. This point V (Figure 4) is here referred to as the “vanishing point”. 
The mathematics of the following section reveals that finding the vanishing point is necessary in 
order to calculate the camera’s compass direction. 
 

 
Figure 4: All ground shadows meet at a point V on the horizon 

 
Connected Component Analysis was performed on the image of shadow pixels to yield a collection 
of shadow regions. For each such region a direction θ was required in order to find V (Figure 3(c)). 
This was achieved through the calculation of spatial and central moments for each region [11]: 
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4.1 Excluding Unreliable Shadow Regions 
 
Because of failings of the shadow detection algorithm many small shadow regions were produced 
for which very inaccurate directions were calculated (Figure 5). An excess of such bad data would 
make it impossible to locate the vanishing point robustly. In order to overcome this problem a 
shadow region tracker was implemented. Only regions that appeared in several successive frames 
with similar position direction and length were considered reliable. (Equation 6 gives the centre of 
gravity of each region as (xc, yc).) Furthermore, all regions below a certain size were discarded, as 
were regions that did not move over time (these were often caused by specular highlights in the 
scene). This technique resulted in a large number of shadow regions being discarded, thus 
improving the quality of the data (Figure 6). 
 

 
Figure 5: Poor shadow detection (a) producing unreliable line segments (b) 

 
Figure 6: All line segments from a video (a) and reliable line segments only (b) 

 
5 Camera Direction Inference 
 
Before the camera’s compass direction can be found we must find the relative orientation S of the 
camera and the shadows (Figure 7(a)). For this purpose we use the pinhole camera model [11].
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If XW represents a point in world space, then its projection u in the image is given by the formula: 
 u = [ KR | – KRt ] XW (9) 
where both u and XW are in homogeneous co-ordinates (which allow directions as well as points to 
be expressed). Both K and R are 3 × 3 matrices, u and t are 3-vectors and XW is a 4-vector. 
 

 
Figure 7: (a) Arrangement of camera illustrating relative orientation to shadows (S) 

 (b) Alignment of world and camera co-ordinate spaces for our purposes 

 
5.1 Intrinsic Parameters 
 
We assume the following about the camera’s intrinsic parameters: 
� the principal point corresponds to the centre of the image 
� the camera has zero skew 
� the camera has a 1:1 aspect ratio 

 
The intrinsic parameters are given by the matrix K. The assumptions given above result in K 
having the following form (note that all image points must be translated to the image centre before 
being used in calculations): 
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5.2 Extrinsic Parameters 
 
The matrix R represents the camera’s orientation in world space. We assume that the camera is 
level, i.e. has zero roll. It is hoped that this assumption can be relaxed in future versions of the 
work. In order to simplify the mathematics we align the origins of the world space and the camera 
space. This means that the translation vector t (Equation 9) is the zero vector. We also align the 
camera’s Y-axis with the world X-axis (Figure 7(b)). The angle T is the camera’s downward tilt. 
The structure of the matrix R is [4]: 
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5.3 Back-projection 
 
In order to find S, the relative orientation of the camera and the shadows, we must have a 
correspondence between a point in the image and a point in 3-space. The vanishing point V in the 
image (see Figure 4) corresponds to the common direction of all the shadows. This direction can be 
represented in homogeneous 3-space as: 
 XW = [ tan S, 0, 1, 0 ]T (12) 
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If the 2D co-ordinates of the vanishing point are measured as u = (uvp, vvp) Equation 9 expands to: 
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It was necessary to change the sign of one element in the matrix K to account for the inversion of 
image space. The variable β is needed because of the use of homogeneous co-ordinates. 
 
We wish to solve Equation 13 for S. Multiplying out the matrices yields the equations 
  (14) 

  (15) 

  (16) 

Equation 16 can be used to eliminate β from Equations 14 and 15: 
  (17) 

  (18) 

Doing so reveals that, in order to find S, either α or T is required. At the present time no other 
information has been extracted from the video sequence. We intend in future work to utilise the 
information about the Sun’s altitude to provide another constraint. For the moment, however, one 
of the unknowns must be assumed. The scaling factor of the camera, α, is an extremely unintuitive 
quantity, whereas the camera’s downward tilt, T, is much more meaningful. Therefore, the value of 
T must be provided by the user, allowing α to be eliminated from Equations 17 and 18. 
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Once S has been determined the camera's compass direction is found as follows: 
 compass direction of camera = azimuth of Sun + S (20) 
 
5.4 Vanishing Point Estimation 
 
The previous section shows that, in order to calculate S, the relative orientation of the camera and 
the shadows, the vanishing point V must be found. Given a collection of shadow regions and their 
associated directions (as discussed in Section 4), we must find V. Theoretically, the vanishing point 
is found as the intersection of any two line segments characterising each shadow region’s position 
and direction. However, because of the existence of noisy data, such a simple technique will not 
work reliably. In its place we have developed a robust iterative algorithm that finds the vanishing 
point in spite of a high proportion of noise. The algorithm is discussed below. 
 
Because we are assuming that the camera has zero roll we can constrain the horizon line to be 
horizontal in the image. 

(Begin with a horizontal line far above the image.) 
1. For a given horizontal line record the distribution of points where the shadow line segments 

intersect it. 
2. Calculate the least square error for this distribution of points. 
3. Repeat steps 1 and 2, moving the horizontal line down the image in small steps at each 

iteration, until it is far below the image. 
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4. Pick the horizontal line with the smallest least square error. It is an approximation to the 
horizon line. 

5. Record the point on this horizon line that minimises the least square error. It is an 
approximation to the vanishing point. 

6. Find the shadow line segment that intersects the horizon line furthest from the vanishing point. 
Remove this line segment from the data. 

7. Repeat steps 1 to 6 until only two line segments remain. Their intersection represents the best 
approximation to the vanishing point. 

 

6 Results 
 
Experiments were performed using two video sequences, each approximately one minute long, of 
people walking across an open area on a sunny day. The videos were shot at 12.15p.m. and 
12.20p.m. on 6 Nov. 2002 in Central Dublin. The downward tilt of the camera in both cases was 
taken as 30 degrees. In each instance the algorithm for finding the vanishing point converged to a 
result consistent with that found by manual calculation using “good” data (Figure 8), in spite of a 
high proportion of incorrectly detected shadow regions. The direction of the camera in video 1 was 
found as South 43 degrees East (Figure 9), and for video 2 as South 10 degrees East (Figure 10). 
 

 
Figure 8: Convergence of algorithm towards vanishing point for (a) Video 1 and (b) Video 2 

 

 
Figure 9: A frame from video 1, the line segments used to find the vanishing point and a virtual 

compass depicting the camera’s orientation 

 

 
Figure 10: A frame from video 2, and its associated line segments and virtual compass 
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7 Future Work 
 
We hope to extend this work to eliminate the need for the user to provide the downward tilt of the 
camera as a parameter. This could be accomplished by utilising the information available about the 
Sun’s altitude and by finding correspondences between people’s heads and the heads of their 
shadows in the video sequences. It may also be possible to extract direction information from time-
lapse footage of the shadows cast by fixed objects such as buildings. 
 

8 Conclusions 
 
We have successfully determined the compass direction of a camera based on the shadows cast by 
moving objects in a video sequence. The automatic extraction of this information has applications 
in a multi-camera network, where a system may seek to relate the data obtained from different 
cameras. Knowing each camera’s compass direction would constrain the search for corresponding 
objects across different views. 
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Abstract
The estimation of Global or Camera motion from image sequences is important both for video

retrieval and compression (MPEG4). This is frequently performed using robust M-estimators with
the widely used Iterative Reweighted Least Squares algorithm. This article presents an investigation
of the use of an alternative robust estimation algorithm and illustrates its improved computationnal
efficiency. The paper also introduces two new confidence measures which can be used to validate
camera motion measurements in the context of information retrieval.
Keywords: Camera motion, M-estimators, Video analysis.

1 Introduction

Content based information retrieval has been a highly active research area during the last decade [14].
The motivation has been that access via keywords allows only a primitive interaction with non-text media
in general. To allow access on the basis of content (e.g. responses to questions like “find all aces in a
game of tennis”) is the key to efficient exploitation of these kinds of information. Typically the process
begins by identifying and extracting feature primitives (colour, shape, motion,...) relevant to the content
and these features might be related in some way to the human perception of the data. The features are
then manipulated jointly in response to user queries or in order to identify events.

Motion is clearly an important feature in retrieval from video media, and Global Motion in particular
captures the movement of the camera operator. This motion is well correlated to important events in video
for example sport broadcasts [11] and can be used as a preliminary task before local motion analysis [9].
In this paper, global motion is considered to be that single motion representation which accounts for the
largest moving area in the image.

A 6 parameter affine model is introduced in section 2 to represent this displacement. Those parameters
are then estimated by minimising an energy function. It is local motion that complicates the estimation of
global motion. In effect, that area of the image which undergoes local motion (or discontinuity) acts as an
outlier in the global motion model. Standard estimation methods as presented in section 3, are sensitive
to the presence of such outliers. By using instead, robust estimation processes [4] (M-estimators), it is
possible to handle the presence of contaminated data in the observations i.e. the effect of global motion
in this case. M-estimation has been applied to many problems in computer vision such as regularisation
[6], motion optical flow estimation [1], object tracking [2], or object recognition and detection [8].

This paper considers two algorithms used for performing robust Global motion estimation with M-
estimators. The first is the so-called Iterative Reweighted Least Squares (IRLS), and the second is the
little known Iterative Modified Residuals (IMR) [10]. This article quantitatively analyses how well they
perform with respect to the accuracy of the motion estimate itself and it compares their computation
times. The paper shows that in fact, the two algorithms lead to the same performances for accuracy, the
IMR is more computationally efficient.
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Of special importance in any estimation problem on real data is to measure the confidence of the
estimates. The paper also introduces two new confidence measures which can be use to validate camera
motion measurements in the context of information retrieval.

2 Image sequence modelling

Motion estimation techniques presented in this article rely on the following image sequence model:���������
	����
�����������������������������
(1)

where
���������

is the grey level of the pixel at the location given by position vector
�

in the frame � . The
vector function

�����������
is the transformation of image coordinates induced by the motion between time� �"! and � .

�
is the vector formed by the motion parameters. In other words, it means that the current

frame can be created by rearranging the position of the intensities from the previous frame.

Camera Motion Model. To represent motion such as zooming, rotation and translation between the
current frame � and the previous frame �#��! , a 6-parameter affine transformation

�����������$	&%'� ��(
is used where

%
is a )+*#) matrix for affine transformation and

(
is the displacement vector, as below:�����������,	 %'�-�.(	 /10 � 03203450
687 /"9: 7 �;/1<>=<>?@7	 /10 � 9 � 032 : � <>=034
9 � 0
6 : � <>?@7 	�AB�����C�

(2)

where
AB�����
	 / 9 : !EDFD5DDFD5D 9 : ! 7 and

�G	IH 0 �J� 032 � <>= � 034 � 0
6 � <>?JKML .

Toward a linear residual. The parameter
�

can be estimated by minimising some function of the
residual

�������N	G�O������� � ���
������������������� . This residual
�������

is however not linear in
�

. A Taylor series
expansion around the motion parameters

�
is used to linearise the parameter estimation problem as

follows: ��������� � ���
������AB�����C���
	QP+���
������AB�����C����R�AB������RTSU�V�.W3����� (3)�������
and the higher order terms of the expansion are lumped together in the new residual

W3�����
linear

with respect to the update
SU�

. The
P

operator is the usual multidimensional gradient operator. The
estimation proceeds by recursive estimation of

SU�
and updating of

�YXZ�[�[SU�
. This simple idea

unifies all previous approaches to Global Motion estimations.
The equation (3) is expressed at each location

�
. Considering all the pixels, it can be rewritten using

vectors and matrices such as: \ 	G]�R�SU�"�@WWW
(4)

with the vectors (limiting the notation to the first two locations
�_^B	`� 9 �J� : ��� and
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and the following matrix:�#�������3�o���J��J� ���q���M��������� �{���J��J� �m�q���M������� �J��J� ���q���M������� �3�o���J��J� � �q���M��������� �o���J��J� � �q���M������� �J��J� � �q���M��������>�b���J��J� ���q���M�3�O����� �����J��J� �m�q���M�3����� �J��J� ���q���M�3�O��� �>�b��� ��J� � �q���M�3������� �b��� ��J� � �q���M�3�O��� � ��J� � �q���M�3�����...
...

...
...

...
...

� � 
3 Maximum likelihood estimation

A maximum likelihood approach to estimation of
�

would choose an estimate ¡� which maximises the
likelihood of

�������
as all the sites in the image simultaneously ¢ ��WU� . This is equivalent to minimising

the log liklelihood �8£M¤¦¥
¢ ��WU� . In practice, by exploiting the linearisation of the log-likelihood (as in
the previous section) around a current estimate of

�
called

�¨§
; it is possible to generate an estimate by

successively updating ¡� through ¡� §q©�� 	G� § � ¡SU� . Where
SU� §

is the update to be estimated.
Assuming the distribution of the residual

W W W
is spherical (i.e. multidimensional gaussian with a covari-

ance matrix proportional to the identity matrix), the algorithm can be written as :ª ¤«««««�¬SU�[	�­U® ¥N¯�°q±³²�´¶µU· �MW W W>¸ §q¹ ��	Gº1»�H W¦¸ §q¹ ����� K 2T¼½�¨¸ §q©��¾¹ 	 ½�¨¸ §q¹ � ¬SU�¿ ±
Àm°q£3Á�¤>±
Â¦Ã ® ¥¦ÃJ±oÁ�Ã ­ À�Äb± ­ £
Å�À�ÃOÆBÇÇ Ç � ½�G	 ½�¨¸ §§ §q¹ � (5)

At each step Ç , ¬SU� is estimated by Least Squares:

¬SU�[	IH ] ¸ §q¹ L ] ¸ §q¹ K ��� ] ¸ §q¹ L \ ¸ §q¹ (6)

4 Robust M-estimation

Least Square estimation is sensitive to gross errors (or outliers) due to, for instance, local motion in the
video different from the global motion or occlusion effects. M-estimators [10] are now widely used to
perform robust estimation of global motion parameters [4, 15, 13]. The underlying assumption is that
the probability density function of the residuals is no longer gaussian, and can be written as:¢ �MW W W>��È Ã�É³ÆËÊm� !)¨Ì »ÎÍ / W3�����ÏoÐ 7ÒÑ (7)

Several functions Í , convex or non-convex, have been proposed in the literature [4, 8, 13]. In our ex-
periments (section 6), we have chosen the convex function Í ��Óm�8	 )oÔ ! �ËÓ 2 �G) , in order to avoid
problems with local minima occurring with non-convex ones which could disturb the comparison of the
algorithms. Ï{Ð is the scale parameter that controls the limit where the influence of the outliers begins to
decrease [10]. This parameter is fixed offline [4] but to simplify, it is set to 1 in the following equations.

The corresponding energy to minimize is non-quadratic and requires specific algorithms. Two have
been proposed in the literature. The first is widely used and is called The location step with modified
weights [10] in the robust statistic framework, or more commonly the Iterative Reweighted Least Squares
[12], or as ARTUR in the Half Quadratic (HQ) formulation [5]. The IRLS algorithm is reviewed in
paragraph 4.2.

The second algorithm, little known in computer vision literature, has first been called The location
step with modified residuals in robust statistics [10] and as LEGEND in the HQ framework [5]. This
algorithm is referred as Iterative Modified Residuals (IMR) and is explained in paragraph 4.3 for global
motion parameter estimation. The section 4.1 briefly explains the origins of the two algorithms and they
are compared in section 4.3.
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4.1 Half-Quadratic Theory

Several explanations can account for both algorithms [10, 5, 8], but for simplicity we choose here the
HQ framework. Maximising ¢ �MW W W¦� in

�
is equivalent to minimize · �MW W W¦�
	Gº » Í ��W3������� iteratively in

SU�
.

HQ theory defines an augmented energy · Õ with the same global minimum:· �MW W W¦�
	 ¯�°q±ÖØ× · Õ �MW W W
�mÙ��
	 Ì »ÚÍ Õ ��W3��������ÛU�������TÜ (8)·�Õ is minimized iteratively in
SU�

and
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The different interactions of the auxiliary variable

Ù
with the residual

W W W
defines the different robust

algorithms of the M-estimation.
Ù

corresponds to weights on the residuals in the IRLS algorithm and is
denoted â in section 4.2.

4.2 Iterative Reweighted Least Squares (IRLS)

The first proposed augmented energy can be written as:· Õ �MW W W
� â �
	 Ì »Îã �����NH W3����� K 2 �Vä+� ã ������� (9)

When the auxiliary variable â 	 µ ã ����� ¼ » is fixed, the update is estimated by weighted Least Squares:SU� ¸ Ý ¹ 	IH ] ¸ §q¹ Læå ¸ Ý ¹ ] ¸ §q¹ K ��� �ç] ¸ §q¹ � L�å ¸ Ý ¹ \ ¸ §q¹ (10)

The diagonal matrix å 	[è ° ­ ¥ � â � is then updated by ã ¸ Ý ©��¾¹ �����_	 Ðmé ¸ ê�¸ » ¹x¹2�ë ê�¸ » ¹ . The weights act to reduce
the effect of large residuals in the estimation process. A parametric expression of the function

ä
is

proposed in [8]: ««««« ã 	 Ð é ¸ ê ¹2 êäG	 Í ��WU� � Ðmé ¸ ê ¹2 W
Under some hypothesis on Í [7, 3], this can be expressed as

ä+� ã �¶	QìC����ìæíx� ��� � ã ��� � ã ��ì{íx� ��� � ã � withìC� 9 2 �
	 Í � 9 � .
4.3 Iterative Modified Residuals (IMR)

The second augmented energy can be written as:· Õ �MW W W
�mÙ��
	 Ì » H W3����� � ÛU����� K 2 �Ëîo��ÛU������� (11)

When
Ù@	 µ ÛU����� ¼ » is fixed, the update is computed by :SU� ¸ Ý ¹ 	IH ] ¸ §q¹ L ] ¸ §q¹ K ��� ] ¸ §q¹ L � \ ¸ §q¹ � Ù ¸ Ý ¹ � (12)
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The vector
Ù

is updated by
ÛT¸ Ý ©��¾¹ ������	gW3����� / !Ò� Ðmé ¸ ê�¸ » ¹x¹2 ê�¸ » ¹ 7 . Here the auxiliary variable acts again

to reduce the effect of large residuals but here by subtraction of each outlier.
î

has been defined as
[7]:

îo��ÛO�B	 Åmï�Æ�ð³µ>� ��ñ � ÛO� 2 � Í ��ñ�� ¼ . As this expression is not analytically exploitable, a parametric
expression of

î
has also been proposed [8]:««««««««

ÛÒ	�Wò/ !_� Ðmé ¸ ê ¹2 ê 7î¨	 Í ��WU� � / Ð é ¸ ê ¹2 7 2 (13)

Remarks It has been shown that the IRLS algorithm converges in less steps á á á to the estimate ¬SU�than the IMR [10, 8] (cf. figure 1). But in comparing equations (12) and (10), we see that the IMR
algorithm involves less computation (product of matrixes

H ]�¸ §q¹ L ]¨¸ §q¹ K ) at each á step than the IRLS
(
H ]¨¸ §q¹ L å ¸ Ý ¹ ]¨¸ §q¹ K ).

Figure 1: Energy · with respect to the step á . Convergence to the minimum faster for IRLS (diamond-
blue) than for IMR (square-pink).

5 Confidence measures

The local motion behaviour or discontinuity contaminates the observations of the global motion. The
level of contamination can be evaluated using the following measures.

Using the residuals. The probability density function of the residuals ¯ ­ É ´ ¢ �MW W W>� (or its correspond-
ing energy defined as ¯�°q± ´ µ>�8£M¤¦¥¶¢ �MW W W>� ¼ ) is directly connected to estimator behaviour. If the estimate
exactly accounts for the motion of each pixel within the image that is undergoing global motion, then
the residual energy is zero (consequently, the likelihood probability is high). Conversely, high residual
energy implies poor estimation and low likelihood probability.

Using the weights. The auxiliary variable used in the IRLS algorithm collects the weights defined on
each residual. This weight is close to one when the residual is an inlier for the estimation of the global
motion parameter, and close to zero otherwise. The image of the weights can be seen as a confidence map
on the data. We propose a measure using those weights: ó H ã 2 K 	gô�õ
ö ÷ ¸ » ¹ùø �ô õ � . The measure is the Mean
Square weight (MSW) across the entire image, and if most of the image can be accounted for by global
motion, one would expect the IRLS MSW to be 1.0 and the IMR MSW to be 0.0. This measure is slightly
different from that proposed by Bouthemy et al.[4] in that it does not require any prior thresholding.
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6 Experimental results

Artificial sequences Three artificial video sequences (50 images of ú¦ûUD�*8)¦ü¦ü pixels) were generated
by applying a motion with known parameters on an original frame. The sequences show accelerating
global motion in order to simulate rapid camera action.

Accuracy. As the table 1 shows, the accuracy of both algorithms on each parameter are the same. The
error on the translation parameters is bigger than the one of matrix

%
, but is still very small ( ý�ý[! pel).0 � 032 034 0
6 <>= <>?

IRLS þ�ÿq!OD � 6 ú3ÿq!OD ��� ú3ÿq!OD ��� þ�ÿq!OD � 6 !Uÿq!OD � 2 !Uÿq!OD � 2
IMR þ�ÿq!OD � 6 ú3ÿq!OD ��� þ�ÿq!OD � 6 ú3ÿq!OD ��� !Uÿq!OD � 2 !Uÿq!OD � 2

Table 1: Average error on the parameters.

Computation time. The estimation has been computed using a three level pyramid as in [4] both to
speed up the computation and to have accurate results. Figure 2 shows the advantage of this approach in
terms of computation time: the notations IRLS and IMR (respectively PYR-IRLS and PYR-IMR) mean
that the estimation has been performed without (resp. with) the pyramid of resolution. The curves show
the computation time (in ms) for each frame of the sequence, and have been computed for the pan-only
sequence which presents a decelerating translation for each frame � such that: <{= � � � 	�� Ã�É³Æ��x� �2 ��� .
The initial guess of the algorithms for each frame � is the identity transformation (i.e. in particular< ¸ §	��
m¹= 	 D ). At the beginning of the sequence, the initial guess is far from the solution, and therefore
both algorithms (without using the pyramid decomposition) require more time to converge than at the
end. This is not the case using the pyramid decomposition where a coarse to fine refinement is used. The

IRLS, IMR, PYR-IRLS, PYR-IMR.

Figure 2: Computation time (pan-only).

table 2 presents the average time of computation on all our sequences using the pyramid decomposition.
No obvious difference appears between the performance of IMR and IRLS.

zoompan pan only zoom only
IRLS 641 639 605
IMR 633 666 607

Table 2: Average time (ms) on artificial sequences.
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Real video sequences A video sequence of cricket has been processed using both algorithms ( !
�UD¦D
images of

� )UD�*�� � û pixels).
Computation time. On the overall sequence, the IMR is reaching the estimate 10% faster than the

IRLS (in comparing their average times �¦û³!J)���� for IMR and ûTþ � û���� for IRLS over the sequence). As
noticed in section 4.3, when the pixels in the image are numerous (that increases the size of the matrixes
involved in the computation), the computation costs at each á step involving the products of matrixes in
the IRLS algorithm can become time consuming.

Confidence measures. The figure 3 shows the confidence measures computed for the global motion
parameter over the cricket sequence: there is an obvious correlation between the shot changes and weak
values of the confidence measures (high values of the energy using the residuals, and low values of
the confidence measure using weights). Abrupt transitions like cuts are well detected by both confidence
measures, but not gradual transitions. As noticed in [4], confidence measures on the estimated parameters
can also be used to detect shot changes in the video sequences. Figure 6 presents the weights estimated

Figure 3: From top to bottom : ground truth of shot transitions (red dashdot lines for cuts, green dot lines
for dissolves, black solid lines for wipes), confidence measures using residuals (middle) and weights
(bottom).

for some images of the sequence. The weights are presented scaled by 255. High brightness represents
pixels with high weights and dark pixels represent those with low weights. Low weights indicate pixels
which are not part of the area undergoing global motion. This is in effect a representation of objects that
are not following the camera motion such as the wipe in image � 	 û³!Jû or people in frame 1400. Strong
camera activity is detected in image � 	 )��³! (travelling <�= 	 !Jû ) through the presence of outliers on the
right and left borders of the weight map. These are caused by off-scene locations that cannot be matched
in the successive images because of the large inter-frame motion.

7 Conclusion

We have presented two algorithms performing the robust M-estimation. Depending on the size of the
images, we have shown that the IMR algorithm can be faster, for the same accuracy, than the IRLS
algorithm usually used to solve M-estimation for the global motion estimation problem. Global motion
parameters are used for instance to index sport events [11] since the movement of the camera is highly
correlated to the game. The two measures characterising the amount of contaminated data can help to
detect shot changes [4]. Finally, weight maps provide a interesting start for local motion analysis and
object segmentation in videos.
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Abstract 
In this paper, we present a hybrid approach for tracking multiple 
objects through occlusion observed by a stationary camera. This tracking data 
can then be used to generate accurate object motion trajectories that provide 
an index key into a database of motion sequences. The system is intended for 
tracking people and objects in crowded environments such as supermarkets or 
shopping malls. The output of the system can be used for intelligent 
behavioural analysis or activity-based video indexing and retrieval for 
security management. The approach starts with a robust foreground object 
detection and SAKBOT-based shadow suppression stage. It is shown how both 
static and dynamic occlusions are handled using a first-order Kalman Filter 
combined with a simple colour model incorporating histogram intersection and 
back-projection for each tracked object. In the next step we use a RANSAC-type 
approach to generate smooth motion trajectories for each object modelled with 
m-degree polynomials. Preliminary results are presented to show how our method 
produces robust trajectory paths insensitive to outliers containing high 
numbers of mis-detected points. A similarity metric is then 
defined using polynomial coefficients. This enables a user to construct a motion 
trajectory query which can be used to index into a database of surveillance clips and 
retrieve similar results.. 
  
Keywords: object tracking, shadow detection, motion trajectory, occlusion handling. 

 
 
1 Introduction 
 
Intelligent surveillance systems are assuming an increasingly important role in crime detection and 
prevention as the number of installed camera networks can attest. One of the most important tasks for the 
next generation of commercial CCTV surveillance systems is to automate the process of tracking people, 
objects and their interactions in complex and crowded environments. The tracking problem (i.e. establishing 
inter-frame correspondence for individual objects over a video sequence) has been extensively studied in the 
computer vision literature [1][2]. However, the issue of how to curate the vast quantities of tracking data 
collected has only recently been addressed by researchers. One approach is through semantic video 
interpretation [3] where the system attempts to recognise user-predefined events such as certain types of 
possible criminal activity. An alternative is to analyse object motion paths [4][5][6] in order to learn and 
predict patterns of behaviour, or to allow users to create queries about the content of surveillance scenes 
[7][8][9], e.g. trajectory, colour, type of object, etc. and thereby retrieve useful information. 
 Our work most closely relates to [7][8], since the aim of the project is to develop a system for 
indexing and retrieval of relevant video sequences based on object motion paths. The specific application 
domain addressed is indoor retail store surveillance which offers a number of challenging problems when 
attempting to automate scene analysis. These are as follows: 

• Static/dynamic occlusion: Indoor environments such as retail stores and shopping malls are often 
crowded and hence are full of static and dynamic objects that may partially or totally occlude the 
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target object. This results in rapid appearance and shape changes which must be dealt with carefully 
if identified objects are not to be mis-classified. This is an inherent problem when attempting to 
analyse crowded scenes. 

• Shadows: Often strong artificial illumination from multiple light sources used in indoor scenes 
introduces problems in effective foreground detection due to the generation of shadows of varying 
intensities in different parts of the scene. When the object moves close to the light source, the 
intensity of the shadow increases rapidly. 

• Background changes: Previously moving objects that suddenly become stationary in the scene for 
long periods or sharp changes in lighting conditions cause instability in the background model. As 
the first step in reliable object segmentation is normally background subtraction, the system must 
react and adapt to the background changes by frequently updating the model. 

 
1.1  Related work 
 
There have been numerous efforts to robustly track objects in crowded scenes. This work can be categorised 
into single or multiple cameras, static or moving cameras, colour or grey scale, and single or multiple person 
tracking systems. The W4 system [10] tracks people in grey scale video obtained from a static camera. The 
foreground object is detected using a statistical background model, and a set of features (such as silhouette 
calculation, body parts localisation) for each object and group is computed. These features are then used to 
track moving objects through various types of occlusion. An enhancement to the system known as W4S, 
which integrates real-time stereo computation in order to suppress shadows (previously detected as separate 
blob or new foreground objects), is described in [11]. Other noteworthy tracking systems working with fixed 
cameras have been reported [12][13][14]. 
 In [15], tracking is accomplished by decoupling the problem into two parts. Firstly, the object 
appearance is defined using a colour-based object representation and it then models 2D and 3D velocities of 
the object. An appearance-based description of moving objects is used for measuring similarity among 
detected moving objects whereas Kalman Filtering is used for 2D/3D modelling of tracked objects. The 
SAKBOT [16] approach enables effective tracking of objects, even in the presence of heavy shadows. It uses 
HSV colour space to improve the accuracy in detecting shadows by exploiting the general effects of shadows 
on the HSV component of the pixel on which it falls. This effect includes a lowering of brightness value for 
the pixel (caused by darkening) greater than expected with little effect on the S and V (colour) component.  
 Here, we propose a simple and effective solution for tracking multiple objects in a busy environment 
such as a shopping centre or retail store. The solution combines various existing techniques with some 
modifications.  
 The remainder of the paper is organised as follows. In section 2, an algorithm to detect foreground 
objects using an adaptive statistical background model is discussed. A technique to avoid moving shadows 
being classified as part of a moving object is then described. Section 3 specifies the algorithm used to track 
objects in various possible scenarios. These scenarios include tracking of multiple objects through both 
partial and complete static or dynamic occlusions. The algorithm uses a hybrid model comprising a spatial 
prediction component based on the output of a first order Kalman Filter and appearance model component 
based on technique of colour indexing proposed by Swain and Ballard [17]. In section 4, we describe the 
procedure for modelling the motion path generated by the object tracker points. This method is shown to be 
insensitive to gross outliers in the data, instabilities inherent in the tracking algorithm and is particularly 
suited to smoothing through occluded sequences. We then show how to use the output for indexing motion 
histories. Preliminary results are presented in section 5, concluding with a discussion and summary in section 
6. 
 
 
2 Foreground Object Detection 
 
We adopt the adaptive background modelling technique based on [10] which has proved reliable. Before 
background subtraction can be applied, an initial background model should be learned based on frames with 
a majority of the background visible. However, the algorithm can create an initial background model even if 
there are small localised visible objects moving in the scene. A set of masks can be used to neglect the 
moving objects and we can select only the valid regions to be used to update the background model. It also 
caters for any object that moves into the scene (then identified as a foreground object) and remains stationary 
for a long time period. Similarly, any object which is initially assumed to be the part of the background but 
then starts to move, can cause false background changes for a short period but settles down in a reasonable 
number of frames. 
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 This is combined with shadow detection based on SAKBOT model [16]. Shadows are detected by 
assuming that they reduce the intensity of the underlying pixel without having a significant effect on its 
colour. As background subtraction only takes into account the brightness component of pixel, we need to 
model hue and saturation pixel components separately for shadow removal. The result of applying 
background subtraction with shadow suppression is shown in Fig 1. 
 

       
(a)             (b)               (c) 

Fig. 1. (a) Current frame. (b) Foreground object detected after background subtraction. (c) 
Foreground object after background subtraction with shadow detection and removal. 

 
 
3 Tracking via Motion and Appearance Models 
 
This section describes the techniques employed to track labelled moving objects through frames. We deploy 
a simple motion model based on first order Kalman Filter and an appearance model using colour histogram 
intersection and backprojection [17]. The advantage is this approach is its speed and simplicity of 
representation. 
 The motion model for the object is specified as follows. The bounding box and centroid coordinates of 
the identified object are used as the state and measurement variables in the Kalman Filter such that: 
 
   [ ]2211 yxyx=m          (1) 
 
   [ ]hwyxyxyxyx 22112211 ∆∆∆∆=S      (2) 
 
where m and S are measurement and state models and (x1, y1, x2, y2) represents the left, top, right, bottom 
boundaries of the bounding box. (∆x1, ∆y1, ∆x2, ∆y2) represent the corresponding change in the values of 
boundaries in recent frame and (w, h) specify the overall width and height of the bounding box. These 
variables are used in the case where one bounding edge of a target is observable and its opposite boundary 
just becomes occluded. The occluded boundary can then be approximated by adding/subtracting the w or h 
state variable. Since we assume the object moves through image space at constant velocity, the new position 
at time t + 1 is predicted from the position at t by the equation: 
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     (3) 

 
 The appearance model for the object is constructed as soon as the foreground blob is identified as a 
valid moving object. The object model is obtained by creating a colour histogram for the pixels considered 
part of the object. Each component of the colour model is quantised using a variable number of bits. Here, we 
use 5 bits (32 bins) for each colour component (H and S) and 4 bits for brightness (V) component. A smaller 
number of bins for V component is consistent with the fact that as the object moves, the brightness of the 
illumination varies according to its distance from the light source. The overall structure of the tracking 
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algorithm is illustrated in Fig. 2. The tracking algorithm works as follows. For each frame in the video 
sequence: 
 

Step 1. Predict the new position of each tracked object using eq.(3). 
Step 2. Calculate the most likely position of the object based on the prediction and the actual 

measurement associated with the object. If the measurement obtained varies significantly from the 
predicted position (e.g. in the case of static occlusion), use the predicted position. 

Step 3. Use histogram backprojection technique[17] to identify the location of the object centroid 
based on colour model. Use the additional information obtained to validate and adjust the object 
location. 

Step 4. Update the object state variable based on the object’s most likely position. 
Step 5. Update the colour model for the object if it is not subject to static or dynamic occlusion. 
 

Extract Frames From 
Sequence

Detect Foreground 
Regions/Blobs after Object 

Segmentation

Compute Predicted Position 
Using Kalman Filter and 

Histogram Backprojection

Estimate Boundary 
Location From Valid 
Opposite Boundary 

Location

Check the Position of 
Object in the Scene

Estimate from 
Prediction Value

Validate Measurement for 
Each Object Boundary

Update Object Current 
State Using Predicted 
and Measured Value

Map Identified Objects to 
Detected Regions

Object Fully Occluded 
- Use Prediction to 

Approximate Location
Delete object

Check Region Location

Create New Object

valid measurements invalid measurements 

partially valid   measurements

object not in      “scene exit” location

object in   “scene exit” location

object in   “scene entry” location

object mapped to region
object not mapped   to region

Region not assigned  to any object

 
Fig. 2. Block diagram of the tracking algorithm 

 
For objects that are dynamically occluded, extra processing is needed. In this type of situation, an object may 
partially or fully occlude the other objects. When different objects start to overlap in the scene and appear to 
move together, then all the constituent objects of the group are tracked as one large blob. Within the blob, the 
location of the object is approximated by the colour model using a histogram backprojection technique. This 
is accomplished as follows. 
 Assuming a pair of multi-dimensional histograms G and H each containing n bins, where G represents 
the target object model and H the ‘background’ image, we define a ratio histogram Ω between object and 
image as 
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Image values are then replaced by the values of Ωi which they index. The backprojected image is then 
convolved with a mask which is approximately the size of the object’s bounding box. The index with 
maximum value in the convolved image is the approximate location of the object. This additional information 
provides a cue for the object location within the larger blob (representing multiple objects with dynamic 
occlusion). When the objects separate from each other, the unique identity of each object is verified by 
intersecting the separated region model (i.e. histogram) with the histogram of all the objects (originally part 
of the dynamically occluded blob) in the current frame. The histogram intersection measure Ψ is defined as 
 

   ( )∑
=

=Ψ
n

i
ii GR

1
,min           (5) 

 
where Ψ represents the number of pixels with the same colour in the two reference histograms, R is the 
colour histogram of the region, and G is the target object histogram. The object with the maximum value for 
Ψ is assigned to the region that is separated from the dynamically occluded group. 
 
 
4 Modelling the Motion Path 
 
4.1  Model Fitting 
As for most tracking algorithms, the output is a set of (usually noisy) 2-D points representing the frame-to-
frame reference location of an object tracked through the image space. We propose to model the overall 
shape of the resulting tracked points using a low degree polynomial. For more complex motions, the 
representation could be piecewise but we do not consider that here. The advantages are that a model 
representation will result in significant compression of the tracked data and it can also be used to index stored 
video sequences where the generic motion path of an object is of interest, e.g. to a CCTV operator. 
 We consider a RANSAC implementation [18] for the least squares (LS) approximation of a set of n 
data points (xi, yi) (i = 1,2,...,n) by a polynomial pm(x) of degree m < n. The unknown m+1 coefficients ak (k = 
0,1,...,m) can be determined by minimising the function E with respect to a0, a1, ... 
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This is suitable in the case where x coordinate values are monotonically increasing. Where the values are 
monotonically increasing in y, we reverse the roles of x and y in eq.(6).  
 It is well known that least squares is a smoothing technique that is highly sensitive to gross errors. 
These outliers commonly arise in the tracking process due to object miss-classification and measurement 
error. RANSAC, on the other hand, is particularly suited to model fitting where the data is highly 
contaminated by outliers. Instead of using all the points to fit the curve (as in LS), it initialises the model with 
as small a data set as possible and then enlarges this set with consistent data where possible. When there are 
sufficient mutually consistent points, RANSAC then employs a smoothing technique such as LS to compute 
an improved estimate for the fit. This is demonstrated in Fig. 3 where the RANSAC result provides a more 
faithful representation of the motion path data. The intersection of the curves indicate the position at which 
object occlusion occurs. In most cases, m = 3 provides an adequate representation of the modelled trajectory. 
 
4.2  Similarity Metric for Retrieval of Motion Paths 
Since we wish to search and retrieve similar trajectories for tracked objects, it makes sense to index the video 
motion clips in a database using a model-based descriptor. Each tracked and labelled video object is therefore 
represented by the set of coefficients {ai} of the interpolated curve through its motion path. When a user 
invokes a query (motion path) which could be a free-hand sketch or set of trend points marked on a 
representative background scene, the coefficients are generated and compared to each of those in the database 
of clips using a Euclidean distance metric. The best matches are then retrieved in order of similarity. The 
similarity metric d is defined as 
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where Mq = {aiq} and Mk = {aik} (i = 1,..., m) denote the coefficient set for the query and stored motion path 
models respectively. 

 
(a)        (b) 

Fig. 3. Fitting polynomials of degree 3 to motion paths. (a) Tracking up to occluding frames. (b) 
Comparison of LS and RANSAC model fitting. RANSAC produces tighter fitting curves. 

 
 
5 Experimental Results 
 
In this section, we present some results to indicate the effectiveness of the proposed techniques for tracking 
people through static and dynamic occlusions. We then generate motion path models and demonstrate how 
these can be used for object-based video indexing and retrieval. 
 The results shown in Fig. 4 demonstrate object tracking and interaction in the presence of static and 
dynamic occlusion. In Fig. 4(a), objects are tracked independently in the presence of static occlusion 
(represented by the table). Objects move towards each other and come into contact, thus merging into a 
single blob, but are still identified as separate objects shown in Fig. 4(b). Object 1 moves behind object 2 and 
is completely occluded as shown in Fig. 4(c). Two objects then separate and are identified and tracked with 
the correct label as shown in Fig. 4(d). The results demonstrate usefulness of appearance model since both 
objects are of similar colour distributions and object 1 is completely occluded by object 2 for some time as 
shown in Fig. 4(c). 

 

 
(a)    (b)    (c)    (d) 

Fig. 4. Tracking of multiple objects through occlusions. (a) Objects are tracked independently (b) 
Objects come in contact with each other (c) Object 1 is fully occluded by object 2 (d) Tracking 
continues with correct labels on the objects. 
 
 Fig. 5 illustrates the results of using eq.(7) to search and retrieve object motion paths, similar to a 
user-defined query, from a surveillance database of motion clips. A partial or complete trajectory has been 
recovered for each successfully tracked object in the motion clip using the method described in section 4.1. A 
sample set of trajectories are shown in Fig. 5(a). Where the motion path is more complex and cannot be 
adequately modelled using a low-order polynomial, either this has been excluded from the database or stored 
only as a partial trajectory. The same is true of object paths where tracking has been lost due to complete 
occlusion. 
 Figs. 5(b)-(d) show the object motions retrieved for various user-specified queries. The stored 
trajectories (and hence motion clips) are ranked according to their degree of similarity to the query and the 
results indicate those inter-trajectory coefficient distances lying within a certain tolerance τ, where d(Mq,Mk) 
< τ. The coefficient distance metric, though simple to compute, appears to give plausible results even in the 
case of a partial trajectory query, shown in Fig. 5(d).  In future work, we intend to compare the performance 
of several different similarity metrics including Hausdorff distance measures (HDM). HDMs [6] are 
expensive to compute but have the advantage of working with point sets that are more suited to the case of 
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complex trajectory shapes. We also intend to investigate the addition of a velocity difference term to the 
metric since this important information is currently neglected.  
 

  
(a)       (b) 

  
(c)       (d) 

Fig. 5. Using a user-sketched query to retrieve similar motion paths. (a) Database of stored motion 
paths. (b)-(d) Highest ranked results for various queries based on closest distances in coefficient space- 

only those trajectories lying within a certain tolerance are displayed. 
 
 
6 Conclusion 
 
We have presented a simple but effective approach for tracking multiple objects through static and dynamic 
occlusions. It requires colour images as this is vital for shadow detection and maintaining an object-based 
appearance model used for disambiguating merged regions during occluding frames. If the predicted object 
position varies significantly from the measured position based on the current frame, Kalman Filtering is used 
to estimate the new location. The prediction is then adjusted after performing histogram intersection of the 
object in the current frame. 
 Motion trajectories are then modelled via polynomial interpolation adopting a RANSAC approach for 
ensuring the generated motion paths are resistant to outliers. The coefficient descriptors prove to be a useful 
index key into a database of video clips representing object motions. A user-defined query can be sketched as 
a means of retrieving similar motion events which makes this a useful tool for surveillance-based intelligent 
behaviour analysis. 
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Abstract

We present in this paper a CBIR system for use in a psychological study of the relationship
between human movement and Dyslexia. The system allows access to up to 500 hours
of video and is an example of a scientific user context. This user context requires 100%
accurate indexing and retrieval for a set of specific queries. This paper presents a novel
use of interactive visual and audio cues for attaining this level of indexing performance.
Furthermore, the issue of motion estimation accuracy in the presence of compression artifacts
is explored as part of the data integrity storage problem. In addition, content based motion
analysis techniques accurate enough to parse sequences on the basis of motion and objectively
evaluate that motion are investigated. The tool allows Psychologists to undertake a study
that would previously be impractical and the paper presents a number of lessons gained from
the ongoing work.
Keywords: content retrieval, tracking, video retrieval, dyslexia, human body motion

1 Introduction

Developmental dyslexia (also known as ’Specific Learning Difficulty’ or SLD) is a serious societal
problem. It affects 8% of the population - that implies 480,000 people in Ireland alone. It is
not caused by lack of intelligence, emotional disturbance, poor teaching, family difficulties or
social problems. If left untreated, a child can develop poor self-esteem and confidence and fail to
master even the basics of reading, writing and arithmetic. These children require a high level of
educational resources and have the strong potential to continue causing problems in the school
system. The cost of dyslexia to the society infrastructure as a whole is therefore enormous. There
is currently no reliable diagnosis available to identify dyslexia until the child has demonstrated
a failure to read after persistent attempts (usually at the age of 8 or 9). Remedial therapies
are based on intensive practice of basic language skills and so occupy a large amount of teacher
resources (often on a one to one basis). More often than not the child never reaches his or her
appropriate reading age. McPhillips et al. [4] presented the notion that there is a quantifiable
connection between Dyslexia and the retention of certain reflex movements. Dyslexia is now no
longer seen solely as a problem generated by a higher-order brain malfunction, but as possibly
a treatable disorder with a physiological rationale. Evidence was provided that in Dyslexics,
certain primary reflexes [3] are retained. In subsequent development, these reflexes become
integrated into postural reflexes to allow the child to progress to the next stage of movement.
But in dyslexics, early reflexes may persist. The work of McPhillips et al. also indicates that
Dyslexia can be treated by retraining the central nervous system by slowly repeating these
movements. Hence the connection between the treatment of Dyslexia and a movement therapy.
The DysVideo project at Trinity College was set up to observe the development of 400 children
aged below 6 years. Each child is observed through 3 sessions of 20 minutes, each 6 months
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Figure 1: Left: Example of exercise to trigger the ATNR primary reflex. Right: Client/Server
System Architecture.

apart. The session is composed of 14 exercises that are designed to trigger each of four primary
reflexes. For example, Fig. 1 shows the movement designed to trigger the ATNR[1, 2] primary
reflex. In this movement, the child stands with arms held out in front. The supervisor then
turns the subject’s head to each side for 5 secs. The arms may follow the head movement or
drop. The amount of movement made by the arms gives one clue about the severity of the
retained reflex. In a non-dyslexic child, the arms should not move.

The idea is to video each session and then to allow the Psychologists access to the recorded
sessions for offline subjective assessment of the degree to which each child meets or fails to meet
the required movement template. However, there are clear difficulties that can only be addressed
by content-based analysis and indexing as follows.

1. Although sessions may last 20 minutes, the actual measurable information may only be
about 5 minutes. This is because much of the time is spent making the child comfortable
and setting up each test. Furthermore, children under ten years old are not known for
good attention spans, thus intrusive behaviour may cause the session to last even longer.
Therefore, it is extremely time demanding for Psychologists to manually locate the useful
information from the massive amount of data recorded. A process is needed to index the
start and end of each session automatically.

2. The movement evaluation as is currently carried out is subjective. Furthermore, without
a video record there is no way to cross check retrospectively between different evaluators.
Indeed, direct observation requires some training and the movement instance can simply
be missed by the observer. Consequently, maintaining a database of scores and movement
sessions is essential. This implies identifying the child and each session uniquely.

3. Objective movement evaluation is required. This could be achieved by automated tracking
of the movement of the limb in question and then attempting to correlate these measure-
ments with a predetermined template motion. However, most trackers require human
initialisation. Given the huge database of material within which the usable material is
just a fraction, this is impractical. A mechanism must be found to directly index the active
portion of each experiment in order to engage an automated tracker.

Each of these problems is now addressed in turn.

2 System Architecture

Fig. 1 shows that the system architecture has a server/client structure. The server performs
the capture, indexing and analysis of video sequences, and can also be used as a browser.
The different clients browse the captured video sequences remotely. Analysis includes sequence
compression and content retrieval.

2
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2.1 Video streaming and compression

A DV camera with an output at a constant bit-rate of 26.4Mbit/s was used. Given that the
total video to be stored is about 500hrs; this is equivalent to about 5.8 Terabytes. To keep
storage costs low, the DV video stream is compressed using MPEG4 with a 1Mb/s bit-rate.
This setting gives comfortable viewing for the human evaluators. The compressed sequences are
stored on a disk for “video on demand”. Compressed sequences are easily stored in fast access
hard drives, e.g. 500hrs of video require 225GB, which is currently easily obtained. Sequences
are compressed in real time at the end of the day’s recording sessions. For practical (space) and
reliability reasons it is more sensible to restrict the recording sessions to one camera only and to
avoid streaming direct to disk. However, 1Mb/s bit-rate does not provide a good enough quality
for motion analysis. There are two possible solutions to this problem. (1) The DV media
should be processed immediately for motion upon capture. (2) Further attention should be
paid to the problem of compressed bit rates required for scientific video analysis. Development
of motion analysis techniques is still an active research area and it is not sensible to rely in
the future on motion estimates generated once upon capture only. Therefore it is useful to
consider the problem of choosing a bitrate which gives little effect on motion estimation, yet
yields good enough compression for long term storage. From our experience, the chosen motion
estimation process [11] operates properly above a bit-rate of 128Kb/s. Consequently, sessions
are compressed at a bit-rate of 2Mb/s, to have a good safety margin, using a MPEG2 codec.

The video from each session is streamed directly into a single file that then must be indexed
to indicate the important portion of that file. The system does not create multiple files for each
session as it is simpler to maintain a basic database. Thus, key or index files are associated with
each session video stream. The creation of the index is discussed below.

2.2 Interactive Audio Markers

The user is asked to use a handheld computer to create tones which are used to indicate the
start and end of each exercise (2 digits), as well as the ChildID (6 digits) etc. DTMF tones
(Dual Tone Multi Frequency), were used because they are better differentiated from speech and
they code 10 digits and two symbols # and *. The symbols are used to mark the exercise end or
an error, respectively. In the first recorded sessions, the DTMF sound was played, near to the
camcorder. Unfortunately, classification was hampered by noise such as laughter. Nevertheless,
the detection was successful in more than 95% of the cases. To achieve 100% accuracy, the DTMF
and room audio was recorded on separate channels of the stereo sound camcorder system, thus
the detection becomes trivial and 100% accurate. The detection requires the discrimination
of two frequencies simultaneously (row/low and column/high) [7]. and consists of 3 steps: 1)
measure and threshold of the energy on all DTMF frequencies, 2) identify the key pressed 3)
group a set of keys to get the exercise number, the child ID or symbols # and *.

2.3 Browser

The browser allows access to a particular exercise for a given session and child as well as scoring
and comparison with other similar sequences. It uses MPEG4 compressed video sequences
(1Mbit/sec) and a database (the indexing or key file), which contains time codes to allow random
access to particular sessions. The GUI is shown on Fig. 2. It allows the user to watch three
different exercises; a window is split horizontally or vertically, when an exercise is added (right-
top bottom). Three sliders are used to navigate throughout the exercise, allowing the user
to repeatably view the important sections of the session. On the right part of the window, a
tree displays information on all exercises taken by a particular child in addition to current user
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Figure 2: Browser interface. The user can browse and score up to 3 exercises simultaneously.

scores. Other user scores can be displayed depending on access rights. The browser also allows
computations to derive score statistics across individuals.

3 Content based analysis

The key file allows the indexing of the start and end of each exercise, but there may be some
time between the experimenter inputting audio tones and the actual starting of the movement
experiment. In order to attempt to develop automated motion analysis assessment and explore
how well this correlates with the subjective assessment of the psychologists, a mechanism must
be found to identify exactly when the exercise actions begin. Efforts are currently concentrated
on the ATNR (Asymmetrical Tonic Neck Reflex) exercises. The idea is to use skin detection to
locate limbs, and then to use the rough flesh information in two ways. Tracking of the centre
of gravity (CoG) of the region in the whole frame allows the start of each action to be indexed.
Then, closer body localisation can be carried out again using the flesh detector. This time the
temporal indicators from the CoG analysis can be used to instantiate a tracker for the relevant
limb.

3.1 Skin tone detection

Skin detection is a common technique used, e.g., in face recognition [5, 6]. The idea is to associate
pixels containing skin with a particular colour distribution that is empirically built from observed
images. The best detection quality was obtained using the skin detector described in [9]: a pixel
is flagged if “(R > 95) and(G > 80) and(B > 40) and(R > G) and(R > B) and(R−min(G, B) >
10) and(R − G > 15)”. This detector avoids selection of pure red or gray pixels. Just before
applying this detector, a global colour adjustment is performed to compensate the global colour
variations (for unknown reasons, the image becomes randomly blue). Using the carpet colour as
the reference colour is the carpet, we simply subtract the colour reference to the colour estimated.
A typical result is shown in Fig. 3. In practice all exposed limbs are detected except in instances
where the limb colour is changed due to lighting and shadow. Few false alarms also occur in the
presence of rich reds. This problem is resolved simply by recommending that subjects do not
wear red clothing. The detector works in at least 95% of the cases on 100 sequences of 90s.

4 Analysis of ATNR (Schilder test) exercise

This exercise is described in Fig. 1. The aim of the analysis is to track hand positions over the
sequence. The analysis is challenging because of many degrees of freedom of arms and hands
and unreliable framing of the child in the field of view. Moreover, children do not co-operate
actively with the exercise and this implies that less than 50% of the sequences correctly match
the exercise template.

4
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Figure 3: Left: Original with a red indicator showing result of hand detection and an estimated
motion track in blue, Right: Result of skin detection and horizontal and vertical projections
showing body localisation.

4.1 Hand localisation

To build a rough localisation of hands we exploit the starting conditions of the ATNR experiment:
hands down, arms up to shoulders and straight forward (e.g. image Fig. 3). Detected areas of
skin can then be associated with limbs. Because both arms are detected, a vertical projection
of the skin detection image gives the body range along the X axis. Using this narrowed range,
a horizontal projection gives the bottom position of the hands with the search constrained in
the top half of the image. Fig. 3 shows both projections: we see immediately that it is easy to
locate body boundaries.

Once the top part of the body is localised, hands are associated with the lowest parts of
that skin/body mass, with small objects removed using an erosion operator with a mask size of
10× 10. All possible point pairs pl and pr, for left and right hands respectively, are considered.
The pair that maximises pl(y) + pr(y) is chosen as the hand detected positions.

We tested the hand localisation on two sequences of duration 1.5 mins which is the total
extent of each exercise. During the exercise, there are only a few seconds in which the hands are
detectable in the expected pose. The hand position is working in 80% of the cases (both hands
are correctly localised).

4.2 Analysis

The localisation feature presented above can then be exploited in two ways to provide the
Psychologists with a possible objective measure of motion. First of all, there is a need to locate
efficiently in time the start and end of each exercise instance. Having done this, hand detection
can then be used to initialise a tracker [8] or optic flow field estimation can be used to generate
some index of fit to an expected template optic flow field. This paper does not present any
results of motion measurement as the study is still in an initial phase. However, the body and
hand localisation feature are important features for content access when coupled with simple
motion information.

Again exploiting the user context, the ATNR exercise begins with the experimenter’s hands
moving between head and arms as this is a training period for the child subject. Thus vertical
movement is an indicator of the specific start point of this exercise. A simple feature to index
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Figure 4: Mean vertical motion of limbs (on the left) and vertical position of the center of gravity
(on the right)

this information therefore is the centre of gravity of all the skin detected in a particular frame.
This is in fact related to a geometric moment, a feature we have exploited successfully in the
past for sport events [8]. A track of the vertical displacement of this Frame-CoG is shown on
the right in Fig. 4. Explicit hand tracking can also yield similar information. Experiments were
carried out using a primitive tracker. A hand reference point is assigned which is expected to be
at the centre of the palm. Optic flow components within a disc of radius 12 pixels around this
reference point are then averaged to estimate the motion into the next frame. In the next frame
the point is corrected to be at one half disk radius away from the bottom detected hand portion.
Furthermore, to avoid lateral drift, the horizontal position of the reference point is corrected to
be at the centre of gravity of the detected hand portion within the disk radius. This correction
is at most 3 pixels in practice and hence problems do not arise with the hand portion moving
outside the disk radius. A track of the hand over 100 frames is shown superimposed in Fig. 3.
Both these features show points of action indexed by large positive motion followed by large
negative motion as expected. They do not agree entirely however, since hand tracking is explicit
while Frame-CoG is implicit. In practice, we find that using the Frame-CoG feature the start
of 90% of ATNR exercises is successfully located, while yielding 25% false alarm rate. The
false alarm rate is high due to the crude feature extraction step. Nevertheless, given a manual
initialisation, hand tracking is accurate and over 3 minutes (the full extent of the exercise for
two realisations) (as stated in the previous section) there is no loss of lock.

5 Analysis of ATNR (ayres test) exercise

In this exercise, the child is on all fours, head turned to the camera. The supervisor, seated on
one side of the child, turns the head of the child left and right for 5s (see Fig. 5). This movement
may trigger a tremor or a bend of the arms. The goal is to measure the angle of the forearm as
well as the angle variation and speed for each arm. We have to detect the individual realisation
of the exercise since the movement is repeated several times (eyes open and then closed), without
inserting marks. The following process is illustrated in Fig. 5. As in the previous exercise, we
apply first the skin detector to select both arms. This selects arms, hair and supervisor hands.
Then a bounding box containing both arms is estimated to localise further processing. The
bounding box is estimated in two steps. First, a vertical projection gives the vertical position of
arms, we search for the two extrema that correspond to individual arms since they are oriented
vertically. Second, using the previous vertical boundaries, a horizontal projection is performed.
When this projection is scanned from the bottom to the top, this indicates a direction from
fingers to upper arms. The maximum of this curve corresponds to hand location since the width

6

245



L. Joyeux et al

of the hand is larger than that of the arm in the view. The vertical extent of the bounding box is
taken as three times the hand height. This is a weak hypothesis but valid since since body ratio
is relatively constant. The accuracy of the bounding box is 80% on 30 sequences of 90s. The
next step is to estimate the angle of arms and detect each exercise realisation. To do this we
fit a line using Andrew’s sine robust estimator [10] with sine width set to estimated arm width.
This estimator gives a better line fitting than Hough transform or least squares because the arm
is not a straight line (due to geometric projection) and because legs and arms are articulated
and may merge as a single region. The minimisation implementation is performed using the
bisector method by limiting the angle search to [−π/8, π/8] and origin to [−wh, wh] where wh is
the hand width. Line fitting is performed for both arms with the origin set at the corresponding
hand location position estimated during the bounding box step.

CHAPTER 2. EXERCISE #10: AYRES TEST 15

Figure 2.2: y projection and the related bounds

2.1.2 Arm skeleton

The second step after founding the bounding box is to extract the arm main
lines to apply a line detector. To perform this task we calculate a very simple
skeleton by taking the middle of each skin zones on every lines (Fig. 2.3).

Figure 2.3: Skeleton (blue pixels) of skin zone (red pixels)

Figure 5: Left: ATNR ayres exercise. Skin detected pixels are in red. The green curves represent
the vertical (on the bottom) and horizontal (on the left) projections. Right: result of angle and
abscissa estimations for both hands.

In Fig. 5 is shown the result of the estimation. The two lower curves represent the angle
and the two upper curves are the horizontal position (normalised to fit in the plot) of both
hands. From position curves, we can distinguish the actual conduction of the experiment from
the preparation stages. The horizontal hand position has to be constant during experimentation
since hands are fixed on the ground. Any variations, during a period of few seconds, indicates
preparation of the child and not actual conduction of the experiment. Discrimination between
preparation and realisation is therefore performed by fixed threshold on the movement curves
(called mc(t)) : realisation is when |median(mc(t), 10)−mc(t)| < 3.5 where median(x, y) is the
median on x on a window of length y. From the angle curves are extracted the mean, µϕ, and
standard deviation, σϕ (preparation stage intervals are ignored). Speed is parameterised with
mean, µϕ′ , and standard deviation, σϕ′ , on the absolute value of the derivative of the angle
(the angle is filtered to reduce the noise by median filter over 20 images). These features are
used for motion assessment and are currently under investigation. The method presented in
this section has being ran successfully for 80% of the cases for a set of 30 sequences of 90s each.
Failing cases, mainly related to line estimation, are due to bad framing (the child does not fit
the image), objects overlapping arms.

6 Final Comments

This paper has presented a new tool for Psychologists that exploits content retrieval technol-
ogy in research in motor reflexes in Dyslexia. The system allows video on demand as well as

7
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automated indexing and video analysis. As the final users are psychologists and not computer
specialists, simplicity and robustness are paramount. The work has highlighted some interesting
implications for massive databases for scientific use. First of all, storage requirements may not
enable the best quality material to be stored. This limits the quality of scientific analysis of
the picture material. Having two streams of data with two levels of compression appears to be
the best compromise. We have presented new results exploring what the breakdown level is for
motion accuracy applied to compressed sequences. Secondly, by exploiting the user context, the
system is able to deploy 100% reliable indexing. This is imperative for use in scientific investiga-
tion. The use of interactive audio cues is novel and allows 100% reliability to be achieved. New
features that yield position information for identifying the start of stylistic movement have also
been presented. In this user context, explicit tracking with automated initialisation is possible
and this yields powerful information for indexing. Finally, it is noteworthy that this project has
the potential to have a major impact on human observational studies. This project allows for
a deep level of data access without the need for 3D observation, by exploiting the user context.
Our current work focuses on quantitative evaluation of motion characteristics in dyslexic chil-
dren. Video sequences showing indexing and parsing output as well as the browser interface are
shown at www.mee.tcd.ie/∼sigmedia/dysvideo.
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Abstract 
This paper describes a system for monitoring blackjack play based on the video feed 
from a single low resolution overhead camera system.  The system successfully 
monitors play in limited tests.  Given the resolution of the imagery new techniques for 
extracting and identifying the cards were required and are presented in this paper. 
 
Keywords: Image processing, Calibration, Playing Card location and recognition. 

 
 
 
1 Introduction 
 
1.1  Background 
Surveillance costs in casinos are significant and most game tables are monitored by many cameras, 
which, in general, are continually observed by security personnel.  For example the Greektown 
Casino in Detroit has over 1100 cameras which are monitored by trained security staff on a wall of 
colour video monitors.  There are products which attempt to automate some of this monitoring 
activity, such as the MP21 system [1]. 

The MP21 system provides a complete table (rather than working with existing tables) 
incorporating a magnetic card stripe reader, optical reading and accounting for all chips in the 
dealers chip tray, optical imaging system for reading cards as they leave the card shoe and optical 
monitoring of the position of every card and chip on the table.  The system requires the use of 
special cards using patented WinMark™ technology. 

Although these commercial systems exist there appears to be a serious lack of published 
work in the areas of card recognition and automated surveillance of card games.  A search of 
computer vision papers was unable to locate any published work in either field. 
 
1.2  Overview 
This paper presents a system we have developed specifically for monitoring blackjack from a 
single relatively low resolution overhead camera.  The problem was addressed in a series of stages 
which are detailed in the paper. 

1. The video image of the table was rectified so that the view appeared as though it were 
from directly overhead.  The important parts of the table (the bet squares and chip trays) 
were also automatically identified (See Section 2). 

2. The cards are located as they are placed on the table (See Section 3). 
3. The cards are recognized based on the picture or the number of dots (See Section 4). 

One major advantage of the system described in this paper over existing commercial 
alternatives is the fact that it will be extremely low cost as the system work with the existing table 
(and security cameras). 
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2 Calibration 
 
2.1  Geometric Correction of the table image 
A geometric correction was required so that the image of the table to be used for processing 
appeared with the chip tray aligned with the horizontal image axis as though the image were taken 
from directly above the table.  See Figure 1. 
 

   
                        (a)                                                 (b)                                                  (c) 
Figure 1.  Image of a blackjack table taken from an overhead camera (a), with the calibration 
square (b) and geometrically corrected for processing (c).  In normal casino situations it is usual for 
a surveillance camera to be virtually directly overhead lessening the need for this correction. 
 
2.2  Identification of the important table components 
From the perspective of monitoring the game, the chip tray and the bet squares (See Figure 2(a)) 
are the most important features on the table.  These are located automatically as follows.  All 
colours except the cloth colour (See Figure 2(b)) were filtered out.  An opening is then applied (to a 
binary version of the resultant image) in order to ensure a continuous border around the bet 
squares.  The chip tray is easily identified as it is appears a large hole in the cloth colour which has 
a very high value for rectangularity as defined in [2].  The bet squares are located by performing a 
statistical analysis of the areas of cloth colour which are completely encircled within markings on 
the tables (See Figure 2(c)).  Values for area, width, height, rectangularity and elongatedness (as 
defined in [2]) are computed, and the bet squares are identified simply through similarity.  The 
successfully located chip tray and bet squares are shown in Figure 2(d). 
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                                        (a)                                                                                       (b) 

  
                                        (c)                                                                                       (d) 
Figure 2.   The chip tray and bet squares are shown (a), the cloth image after the opening operation (b), the 
regions of cloth colour which are completely encircled by markings on the table 
 
3 Card Location 
 
Having established the positions of the bet squares and the chip tray on the table, it is possible to 
identify regions of the image which can be associated with particular players or the croupier (See 
Figure 3).  Each of these regions is monitored in order to locate stable frames (i.e. those in which 
there is no motion, such as a hand being present).  These frames are then analyzed to determine any 
changes from the previous stable frame for that region. 
 

 
Figure 3.  The areas which are associated with each player and with the croupier/dealer.  Note that the 
positions in which cards are placed by the croupier are well defined with respect to the bet squares (for the 
players) and with respect to the chip tray (for the croupier). 
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In a typical hand a number of events occur.  Firstly the players place some chips on the edge 
of their bet squares.  Once placed the system should be able to detect a new stable image (See 
Figure 4(a)) for each player region which is used as the background image when locating cards.  
Then, once all players have placed their chips, the croupier begins to deal cards and as each card is 
placed yet another stable image is determined for each region (e.g. See Figure 4(d)).  Each new 
stable image is analyzed to see if any new cards are present.  This is done by taking a difference 
between the latest stable image and the background image, thresholding the result (See Figure 
4(c)), performing a closing followed by an opening (See Figure 4(d)) and finally locating all of the 
cards present.  It should be born in mind that the placement of a new card can result in some minor 
movement of the previously placed cards and hence all cards are located during this processing 
(rather than just the most recently placed card). 
 

    
                   (a)                                        (b)                                        (c)                                       (d) 
Figure 4.  Cards and chips placed relative to the bet square of one player (a), a background image prior to the 
cards being placed on the table (b), a thresholded version of the difference between these images (c), and the 
result of applying a closing followed by an opening to the thresholded image. 
 

Locating the individual cards is done by analyzing the outline of the binary region 
determined previously.  This outline is determined using a Roberts cross operators and stored as a 
boundary chain code.  A central axis line is determined (See Figure 5 (a)) between the top left-most 
corner of the first card in a set and the bottom right-most corner of the last card in a set. These 
points are the two edge points in the boundary chain code which are furthest apart (due to the way 
in which cards are placed in Blackjack).  Local maxima and minima are then determined relative to 
the central axis line and from these the coordinates of the final can be calculated (one corner of the 
card is the bottom right-most corner, two of the other corners are the nearest local maxima, and the 
final corner can be calculated by intersecting the lines formed by those two local maxima and the 
next two local minima. 
 

      
                                         (a)                                                                           (b) 
Figure 5.  The outline of three cards showing the central axis line between the furthest points (in pink), the 
local maxima (in red), and the local minima (in blue) (a), and an example of these points extracted from a 
sample card outline of two cards (b). 
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4 Card Recognition 
 
Once the corners of the last card played are known, they are used to generate the co-efficient values 
needed to normalize the image of the card (so that the long side of the card is aligned to the vertical 
axis, and the short side is aligned with the horizontal axis (See Figure 6(a) and (b)). 
 

           
                      (a)                               (b)                      (c)                    (d)                    (e)                       (f) 
Figure 6.  Cards in play.  The four corners of the last card played are highlighted (a), the card is shown (b), an 
image with multiple thresholds (c), the selected threshold (d), a picture card (e) and finally the thresholded 
picture card (f). 
 
4.1  Adaptive Thresholding 
The images of the cards shown in Figure 6 (b) and (e) are typical of the resolution with which the 
system worked.  In blackjack the suit of a card is unimportant and hence the system needs only to 
be able to distinguish the various number cards (1-10), and the picture cards (Jack, Queen, and 
King all have value 10). 

In order to distinguish the various number cards the dots on the card had to be counted.  This 
was done by first applying adaptive thresholding where a number of thresholds are applied to the 
image (See Figure 6(c)), each of these is processed using connected components analysis to 
determine the number of possible dot regions and the threshold with the largest number of possible 
dots is selected. 

There is one exception to this:  If any of the thresholded images has a region which is more 
than a third of the size of the card then the card is immediately classified as a picture card. 
 
4.2  Identifying Number Cards 
The orientation of the card is generally not perfect so a little flexibility is needed when attempting 
value of the card must be derived from the dots on its surface.  All cards other than aces have 
multiple dots which are aligned vertically (See Figure 7 for examples).  The orientation of the line 
between each possible pair of dots is determined and if that orientation is close to vertical, the 
relationship is noted for further processing.  A number of sets of these dots may be determined (See 
Figure 7 (b)-(e)). 
 

 
            (a)                         (b)                          (c)                         (d)                          (e)                        (f) 
Figure 7.  The dots and vertical sets found for an ace (a), a three (b), a five (c), an eight (d), a ten (e) and a 
picture card (f). 
 

If no sets are found but there is a single dot, which is located in the centre of the card, the 
card is recognized as an ace (See Figure 7(a)).  If one set of dots is found the dots are evaluated to 
see if they are positioned in a manner consistent with a card of value two or three.  If no set exists 
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but there are multiple (four or more) dots the lack of structure of the dots implies the card is a 
picture card, and has a value of ten (See Figure 7(f)). 

In the case of multiple sets of vertical dots, the two largest sets are considered first.  The first 
two dots from each of these sets (See Figure 8(a)) are evaluated to ensure that they approximately 
form a square (See Figure 8(b)).  If they do then the centre of the square is checked to see if there is 
another dot present (See Figure 8(c)).  This process is repeated with each adjacent pair of dots from 
the two largest sets (See Figure 8(d)). 

 

 
                                   (a)                           (b)                            (c)                               (d)   
Figure 8.  The four dots considered first (from the two largest vertical sets) (a) form a square (b) in the centre 
of which is another dot (c).  Finally the next set of four dots to be considered are shown (d). 
 

If cards cannot be recognized by one of the above rules then either some of the dots must be 
discarded (e.g. by using a different threshold) or else the card cannot be identified. 
 
5 Results & Conclusions 
 
To date the system has been successfully tested on two pre-recorded video sequences: 

1. A sequence containing four hands of play for one player (1 minute, 3 seconds in length, 
resolution of 360x288pixels and a frame rate of 8 frames per second).  

2. A sequence containing three hands of play two one player (1 minute, 35 seconds in length, 
resolution of 360x288pixels and a frame rate of 8 frames per second). 

 

 
Figure 9.  Sample screen shot from the system at the end of a hand of play.  On the left hand side the full 
view of the table is shown along with outlines of card regions are shown for the two players and the 
dealer/croupier along with an image of the last card processed for each player.  On the right hand side the 
cards registered for each player and the dealer are listed and statistics for each player and the dealer are 
given. 
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The system (when run under Windows on a 2.4GHz processor) executed in real-time on the 

sequences tested.  This is despite a substantial processing overhead due to its implementation 
within a prototyping environment which was not developed as a time-critical application (for 
example every stage in the processing results in a rendering overhead). 

To develop the system further there are many other aspects of blackjack which will need to 
be supported such as “doubling down”, “splitting pairs”, “insurance”, and the monitoring of chips 
and their values.  However, based on our results we believe that real time monitoring of blackjack 
from a single low-resolution overhead camera is feasible. 
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Abstract

Debris flows can be highly destructive: they can denude vegetation, clog drainage ways, damage
structures, and endanger humans. In some real world cases debris flow can be triggered by phenom-
ena that are very close to a dam break and, up to now, it was not known how far clear-water models
could be applied to debris and granular flows. An experimental set-up has been created to validate
and tune a mathematical model of dam break flows: the collection of experimental data requires
high-speed video acquisition and automatic processing of recorded sequences. This work presents
the complete system that has been integrated and developed, using only off-the-shelf parts and opens
source software, the processing steps necessary to extract flow profiles from lateral flume views, and
a comparison between experimental and simulated data.
Keywords: High-speed video acquisition, Sequence analysis, Debris flow, Connected filtering

1 Introduction

The large attention paid by the scientific community to the understanding of debris flows comes from
the high destructive power that such flows have exhibited in many dreadful occasions: debris flows can
exert great impulsive loads on objects they encounter and are fluid enough to travel long distances or to
inundate vast areas, they can exceed 10

9m3 in volume and release more than 10
16J of potential energy;

even commonplace flows of about 10
3m3 can denude vegetation, clog drainage ways, damage structures,

and endanger humans [14].
In some real world cases debris flow can be triggered by phenomena that are very close to a dam

break. Water flows generated by a dam break have been widely studied and mathematical models for
water dam-break waves are available on many textbooks [13]. Compared to water dam-break waves,
debris flow waves display a wider variability; moreover, up to now, it was not known how far clear-
water models could be applied to debris and granular flows and, from an engineering point of view, if
the common practice to predict dam break peak discharge with the classical water formulas can lead to
acceptable results when applied to granular flows.

As is the case for other mathematical models, the validation of debris-flow models relies on the ability
of measuring crucial quantities in laboratory or in other monitored experiments. A key source for experi-
ment observation and data collection is video acquisition because it is non-intrusive and is able to supply
the measurements of many physical quantities from a single experiment execution.

It should be noted, however, that, if inter-frame information is used to derive such quantities, the pixel
size and the frame rate are not independent variables, because the displacements inside images depends

∗This work was partially granted by Italian Ministry of Instruction, University and Research under contract PRIN 2003
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both on the speed of objects and on the zooming factor. When a high spatial resolution is required
the maximum speeds that can be handled using standard 25 fps cameras limit severely the range of
examinable phenomena, making those cameras almost totally useless.

In the laboratory equipment that has been set up to study dam-break-arisen debris flows, all the ex-
periments are carried out in rectangular flumes placed at different degrees of inclination. Debris flows
are triggered by the quick opening of a gate, allowing the material accumulated on one side of the gate
to free flow to the other side. Different runs are made using simple water, a mixture of water and fine
gravel, and dry granular media.

All the experiments require a high-speed recording with shots taken from a lateral point of view to be
able to perform computation on the profile and other flow measurements. Even tough high-speed video-
capture systems exist from some time now, they are characterized by really high costs of the hardware
and software parts used to set-up the system. Our main aim was to build a system with the following
characteristics:

• it is a complete system supplying all the stages from acquisition to data analysis and it is based on
open source software;

• it provides researchers with recordings at high frame rates;

• even though the frame rates are remarkably higher than usual analog cameras the system has
comparable costs so that a single laboratory may afford several of them.

In the following sections, after an overview of the programming programming environment and of
the video acquisition sub-system, the processing of debris flows is presented. A comparison between
experimental and simulated data concludes the paper.

2 The processing environment

Pacco is an extension of TCL, a general purpose command language, and its graphical toolkit Tk [5]. Its
design is characterized by a two-language approach to object-oriented programming where flexible data-
structuring and run-time extensibility let the programmer easily code both highly interactive programs
and batch processing scripts.

2.1 Data Structuring and Processing

A major innovation of Pacco deals with the scalability of data structures. Instead of hiding whole data
structures within the low level side (the C-language functions), the design of Pacco tries to bridge, from
the data-structuring point of view, the TCL side and the C side by reckoning the existence of micro-
structures and macro-structures and by favouring the use of composition of micro-structures at the TCL
level. For instance, an image micro-structure is the two-dimensional array of its pixels, while a macro-
structure of images may be a temporal sequence of frames or a multi-band image or an image with
its iconic attributes (edges, regions,. . . ). It is worth noting that all the macro-structures are ordered
collections of the basic, single banded, image.

Pacco introduces the concept of container (or composite) object that means an object that stores other
public objects, i.e. objects that are accessible from the TCL interpreter. These contained objects are
named components. Each main container is named box and stores a number of components which may
be data objects (both simple or composite) or other container components (Cboxes), thus allowing the
creation of component trees. This macro-structure can be used to fold together heterogeneous data-
clusters and to carry additional hints about existing relationships within the data.

Boxes may be private resources of the process, temporary or distributable. Private boxes are also
dynamic: they can change, to a certain degree, their structure. In this way it is possible to handle highly
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dynamic structures without too much degradation or to embed within a single box or Cbox different
types of representation of the same data-cluster as soon as they become available (e.g. to keep a logical
unity of items derived from a single source).

Actions are C-language or Tcl procedures which access data and produce results, either by modifying
the invoking object or by returning a result-string to the Tcl interpreter.

Data-driven applications can be easily coded thanks to the bind action. This kernel service allows the
Tcl programmer to add a list of commands to be executed whenever the data of a component change.

2.2 Available Classes And Widgets

The current distribution supports eight (non-kernel) classes: numerical vectors, point arrays, strings,
templates (used to store invariant convolution kernels[15] and morphological structuring-elements[11]),
and four types of images (single-banded, colour, complex rectangular and complex polar).

A graphic library extends Tk, the tcl-based X11[10] toolkit, with a set of new widgets and canvas
items that can be linked directly to Pacco components. A number of utility procedure further enhance
the environment with a polymorphic display command, region of interest handling, colormap animation
support, and so on. Bindings allow the automatic update of visualized components.

2.3 Cooperative Development

Another service of the kernel is the loading of unknown classes and actions on demand; this means that
each user can freely develop new extensions, without modifying the kernel of Pacco itself. In other
words, any programmer can define new classes or write new C-language actions without interfering with
the main sources. Thus there is no need to keep several copies of the base sources floating around or
to trouble with concurrent patches. All and any new feature can be tested independently from other
features, and can be installed in the main source tree at any time or kept as a separate library for ever.

3 The video acquisition sub-system

The video sub-system is designed to maximize the price/performance ratio. It is based on a standard
GNU/linux compatible PC and it uses only off-the-shelf parts (boards and cameras) and open source
software.

The heart of the system is a high-speed progressive camera with digital interface. It is capable of
a sustained rate of 36 million pixels per second that may be arranged into different frame-rates (up to
350 fps). This camera is the most expensive piece of the whole sub-system and the one that had to give
the best price/performance ratio, it is easily interfaced to a wide series of digital frame grabbers, and
it has valuable features as far as image processing is concerned (square pixels, full-frame shutter, and
progressive transfers).

The camera is connected to the PC via a digital frame-grabber: a board that handles the transfer of
frames from the camera to the computer. Any board may be used as long as it meets the following two
requirements: it is capable of operating as bus-master for DMA (direct memory access) transfers and it
has an open-source driver, which has to be modified according to the guidelines exposed hereafter.

In order to reduce costs, acquired sequences are not recorded directly to disk; they are stored in RAM
at first and only when the grabbing is completed they are transferred to disk. This approach is mandatory
because designing a direct-to-disk system capable of storing 36MB/s is possible, but surely it is not cheap
at all; on the other hand memory can easily sustain the necessary throughput, is inexpensive and, given
current PC specs, can hold more seconds than each sequence lasts on average.
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3.1 One-shot grabbing

The storage of a full sequence inside the computer memory is achieved by modifying the device driver[7]
of the digital frame-grabber, i.e. the module that takes care of handling the frame-grabber on behalf of
the operating system. Like every driver, it works at the lowest levels hardware-wise therefore it gets
special access to hardware resources and special handling by the operating system scheduler (e.g. it
has its interrupt handling routines served in real-time). Modern frame grabbers, in particular, transfer
data using direct memory access, DMA for short; therefore the only processing takes place whenever
a DMA block transfer is completed. This may be used to grant that the actual processing spent in the
interrupt-service routines is minimal, that the data flow between the grabber and the main memory can
be accurately controlled and that the time stamps marking the acquisition time of each frame are reliable.

What we did is to make sure that all the frames of a sequence could be saved in memory by building a
large enough DMA buffer: during the acquisition of a sequence data is transferred by the board directly
into RAM memory while the only processing required is to keep track of the amount of data transferred
so that the time-stamp of each frame can be computed exactly.

It is important to notice that device drivers must deal with mechanisms and not policies, as they
ignore who is using them (just like objects in OOP) — they must supply models of usage and should
not limit how they are used. Hence a new mechanism, a new model of use, had to be defined: beside
the single frame acquisition and the continuous frame acquisition (with buffer reuse), we added one-shot
acquisition. One-shot acquisition works by allocating a really huge buffer, using most of the physical
RAM, and by avoiding buffer re-use: it always starts at the first frame within the buffer and it stops
automatically as soon as the last frame that fits in the allocated memory has been grabbed. One-shot
acquisition gives a continuous sequence of frames starting from a user-defined time and stopping after a
pre-selected number of frames.

Once the sequence is grabbed, its frames are available using either memory mapping or plain reads
and may be easily saved into files. Owing to its size and its complex structuring, it is not completely
painless processing the acquired data. The most straightforward way to bridge the sequence file into a
processing environment is by means of memory mapping because the benefits of this solution are many
fold: all the sequence frames are available at once, the task of managing the transfers of sequence data
between disk and memory is handled efficiently by the operating system, the developed tools become
truly independent from the type and length of acquisition.

The PACCO processing environment, being designed to supply flexible data-structuring and easy
access to foreign data, makes the sequences accessible thanks to an extension module, loaded on-demand,
that maps sequence frames as image objects and whole sequences as custom-build boxes, leaving the
programmer free from the acquisition details as said before.

4 Automatic computation of flow profiles

A number of experiments was performed and recorded. In the following discussion special attention will
be given to two sets of them as depicted in figures 1and 2. One set of runs used a mixture of water and
fine gravel: the grain size is almost constant and its mean diameter value is 5mm; the grain density is
ρs = 2610kg/m3 , concentration at rest is c∗ = 0.59, while the static friction angle was experimentally
estimated as ϕ = 33

o. The other set of experiments was made using dry PET cylinders: the grain size
is 2.5mm, the grain density is ρs = 1285kg/m3 , and the thickness of the granular material at rest is
145mm.

The two sets of sequences show a different degree of difficulty as far as the determination of the flow
profile is concerned: typically, the simple application of the Canny edge detector [1] to the dry cylinder
sequences is able to highlight the sought-after profile. The water-sediment sequences, on the other hand,
required a pre-processing step. In fact, even though the sediment solution appears markedly darker than
the background a simple threshold operation is not able to segment correctly the foreground and the
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Figure 1: A frame of a dry flow experiment and its resulting edges

direct application of edge detectors does not result in a single, continuous and reliable profile.

4.1 Filters by reconstruction

Like any other filtering stage, the goal of our pre-processing is to smooth and eliminate spurious detail
that exists in input images. In this case, spurious means anything that prevents the correct evaluation of
the flow profile. While adaptive smoothing [8] provides an attractive multi-resolution scheme to filter
input signals by implementing an anisotropic diffusion process [6], it is also true that the convergence
of adaptive smoothing is only asymptotic and, when applied to simplify two-dimensional signals such
as images, results are less satisfactory because of the unequal strength of image edges (which, indeed, is
the motivation that lead us to the filtering stage).

Mathematical morphology, on the other hand, provides a family of filters that preserve the significant
edges of an input image, similarly in some sense to adaptive smoothing. Those morphological filters,
called filters by reconstruction [9], have the property of simplifying image contents while preserving
contours. Filters by reconstructions collect openings by reconstruction and closings by reconstruction
and work on connected components

In particular we define opening by reconstruction any operation that is the composition of any pixel-
removing operation composed with a connected opening (which actually reconstructs any connected
component that has not been completely removed); on the other hand closing by reconstruction is the
dual operation in that it is the composition of a pixel-adding operation composed with a connected closing
(which completely removes any component which is not entirely preserved). Connected openings and
connected closings are also known under the names of geodesic dilations and geodesic erosions [3]
or propagations [2] depending on the different points of view they were first introduced. Filters by
reconstruction for grey-scale images are computed by stacking (i.e. adding) the result of their binary
counterparts applied to each of the (grey-scale) image cross sections [12].

Aiming at preserving the integrity of the profile geometry, especially in the first frames of the se-
quences when we have the evolution of the debris-flow front, area filters were chosen among the filters
by reconstruction because of their shape-preserving ability; at the same time these filters reduce variation
among pixel values, which again plays favourably in limiting the bad effects textures may cause. Area
filters belong to the class of filters by reconstruction; in particular area openings and area closings use a
size criterion for the pixel-removing or pixel-adding operations: any component whose size is less then
the required amount is removed.
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Figure 2: A frame of a mixture flow experiment and its resulting edges

Figure 3: The resulting edges after the pre-processing steps

4.2 The full pre-processing pipeline

The very first steps in the proposed per-processing are the computation of brightness normalization and
difference from a reference frame so that the static content of sequence frames is minimized and the
effect of uneven illumination and of artefacts on the flume walls is made negligible.

The second pre-processing step is the application of area filtering. A sequence of increasing sizes
are used to regularize the main image regions. The result is a quite homogeneous image that has not
modified the border between foreground and background.

The final pre-processing step takes into account the gradient of decreasing luminosity when moving
from right to left; this gradient can be removed by computing a normalization factor vertical line by
vertical line (i.e. based on the maximum value within each vertical line of the image). The normalization
factor is, however, limited to a factor of 1.5 in order to prevent a counterproductive amplification of
noise in the darkest part of the image. The main benefit of this normalization is possibility of extracting
the profile border without imposing any a-priori regularity and leaving the opportunity to choose the
regularization function to the post-processing of border coordinates.

Figure 3 shows the final edges after all the pre-processing steps. The differences in magnitude among
the main profile and the other edges make the profile selection really straightforward.
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Figure 4: Comparison between a simulated flow and the flow profile extracted from the experiment
recordings

5 Comparison between experimental data and numerical simulation

The numerical model was developed on the assumption that the rheology can be reproduced according
to the Mohr-Coulomb yield criterion and is based on Smoothed Particles Hydrodynamics method [4]
Preliminary results show a good agreement. Figure 4 displays the comparison between experimental and
computed flow.

Flow discharges were evaluated by means of numerical integration of the extracted experimental pro-
files; they were computed using the mathematical model as well. The comparison between experimental
and simulated ones is shown in figure 5. Even though there is slight shift in time, both observed and
computed flow discharges exhibit the same peak at about qb = 3100ml/s, which is markedly less than
the theoretical value (qTh = 5120ml/s) coming from the classical dam break formulas developed for
clear water [13].

6 Conclusions

A complete system for the handling of debris flows experiments was presented. The system provides
high-speed video acquisition and sequence processing; it is low cost and open-source based. The system
is being used to model debris flows arising from dam breaks and the preliminary results show good
agreement between experimental and simulated data.
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