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Welcome

We are happy to welcome the speakers and delegates of the 23" Irish Machine Vision and Image Processing
Conference, IMVIP 2021! This year the conference is hosted at Dublin City University over two days, Septem-
ber 2-3.

The IMVIP Conference is Ireland’s primary meeting for those researching in the fields of machine vision and
image processing. The conference has been running since 1997 and provides a forum for the exchange of ideas
and the presentation of research conducted both in Ireland and worldwide. IMVIP is a single-track conference
consisting of high quality previously unpublished contributed papers focusing on both theoretical research and
practical experiences in all areas. IMVIP is run in association with the Irish Pattern Recognition and Classifica-
tion Society (iprcs.org), a member organisation of the International Association for Pattern Recognition (IAPR)
and the International Federation of Classification Societies (IFCS).

This is the fourth time that DCU hosts IMVIP conference after 1999, 2006 and 2011 editions which were held
at DCU in the past. We are delighted to be able to return to on-site format, after the fully online version of
2020. More specifically, this year we are offering a mixed format where the majority of the participants present
on-site and some participate remotely. The technical program this year consists of 12 full and 4 short papers,
all of which are delivered as oral presentations. We are delighted to have two keynote speakers this year: Prof.
Xavier Giro-i-Nieto from Universitat Politecnica de Catalunya (UPC), Barcelona, and Prof. Noel O’Connor
from Dublin City University.

We thank sincerely the members of the Programme Committee for generously giving their time, effort and
expertise in reviewing the submissions. We wish all the attendees a pleasant and engaging experience with the
mixed delivery format at IMVIP 2021.

Vladimir A. Krylov, Kevin McGuinness

Dublin City University
September 2021
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www.dcu.ie
https://imvipconference.github.io/
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Keynote Speakers

Prof. Xavier Giro-i-Nieto is an associate professor at the Univer-
sitat Politecnica de Catalunya (UPC) in Barcelona, member of the
Image Processing Group (GPI), Intelligent Data Science and Artifi-
cial Intelligence Research Center (IDEAI-UPC), Institute of Industrial
Robotics (IRI), and also a visiting researcher at Barcelona Supercom-
puting Center (BSC). He graduated in Telecommunications Engineer-
ing at ETSETB (UPC) in 2000, after completing his master thesis on
image compression at the Vrije Universiteit in Brussels (VUB) with
Prof. Peter Schelkens. After working one year in Sony Brussels, he
returned to UPC to obtain a PhD on computer vision, supervised by
Prof. Ferran Marqués and Prof. Shih-Fu Chang from the Digital Video
and MultiMedia laboratory at Columbia University, that he repeatedly
visited between 2008-2014. He regularly collaborates with the Insight
Center of Data Analytics at Dublin City University, and is a mem-
ber of the Governance Committee of the Science Foundation Ireland
Centre for Research Training in Machine Learning. He serves as as-
sociate editor at IEEE Transactions on Multimedia, and reviews for
top tier conferences in machine learning (NeurIPS, ICML), computer
vision (CVPR, ECCYV, ICCV) and multimedia (ACMMM, ICMR).

Prof. Noel E. O’Connor is a Full Professor in the School of Elec-
tronic Engineering at Dublin City University (DCU) Ireland. He is
CEO of the Insight SFI Research Centre for Data Analytics, Ireland’s
largest SFI-funded research centre. He was previously Academic Di-
rector of DCU’s Research and Enterprise Hub on Information Tech-
nology and the Digital Society, with the responsibility of coordinating
multi-disciplinary ICT-related research across the university. The fo-
cus of his research is in multimedia content analysis, computer vision,
machine learning, information fusion and multi-modal analysis for ap-
plications in security/safety, autonomous vehicles, medical imaging,
IoT and smart cities, multimedia content-based retrieval, and envi-
ronmental monitoring. Since 1999 he has published over 400 peer-
reviewed publications, made 11 standards submissions, and filed 7
patents. He is an Area Editor for Signal Processing: Image Commu-
nication (Elsevier) and an Associate Editor for the Journal of Image
and Video Processing (Springer). He is a member of the ACM and
IEEE.
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Multi-Head Self-Attention via
Vision Transformer for Zero-Shot Learning

Faisal Alamri and Anjan Dutta

Department of Computer Science, University of Exeter, United Kingdom

Abstract

Zero-Shot Learning (ZSL) aims to recognise unseen object classes, which are not observed during the
training phase. The existing body of works on ZSL mostly relies on pretrained visual features and lacks
the explicit attribute localisation mechanism on images. In this work, we propose an attention-based model
in the problem settings of ZSL to learn attributes useful for unseen class recognition. Our method uses
an attention mechanism adapted from Vision Transformer to capture and learn discriminative attributes by
splitting images into small patches. We conduct experiments on three popular ZSL benchmarks (i.e., AWA2,
CUB and SUN) and set new state-of-the-art harmonic mean results on all the three datasets, which illustrate
the effectiveness of our proposed method.

Keywords: Generalised zero-shot learning, Inductive learning, Attention, Semantic embedding, Vision
Transformer.

1 Introduction

Relying on massive annotated datasets, significant progress Semantic Space

has been made on many visual recognition tasks, which is - Plackeve

. . . . Red throat
mainly due to the widespread use of different deep learning (%) N

e reas’
architectures [Ren et al., 2015, Dosovitskiy et al., 2021, '\.‘ ‘ _
K . Multi-coloured back

Khan et al., 2021]. Despite these advancements, recognis- !: R—
ing any arbitrary real-world object still remains a daunt- >

Small size

ing challenge as it is unrealistic to label all the ex- [ 5% ey :
isting object classes on the earth. Zero-Shot Learn- Figure 1: Our method embeds each attribute-
ing (ZSL) addresses this problem, requiring images from based feature with the semantic space. It learns
the seen classes during the training, but has the ca- the visual discriminative features through multi-
pability of recognising unseen classes during the infer- head attention. Best to view in colour: colours in
ence [Xian et al., 2019a, Xie et al., 2019, Xu et al., 2020, the image correspond to the same-colour attribute
Federici et al., 2020]. Here the central insight is that all the in the semantic space.

existing categories share a common semantic space and the

task of ZSL is to learn a mapping from the imagery space to the semantic space with the help of side informa-
tion (attributes, word embeddings) [Xian et al., 2017, Mikolov et al., 2013, Pennington et al., 2014] available
with the seen classes during the training phase so that it can be used to predict the class information for the
unseen classes during the inference time.

Most of the existing ZSL methods [Xian et al., 2018, Schonfeld et al., 2019] depends on pretrained vi-
sual features and necessarily focus on learning a compatibility function between the visual features and se-
mantic attributes. Although modern neural network models encode local visual information and object parts
[Xie et al., 2019], they are not sufficient to solve the localisation issue in ZSL models. Some attempts have also
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been made by learning visual attention that focuses on some object parts [Zhu et al., 2019]. However, designing
a model that can exploit a stronger attention mechanism is relatively unexplored.

Therefore, to alleviate the above shortcomings of visual representations in ZSL models, in this paper, we
propose a Vision Transformer (ViT) [Dosovitskiy et al., 2021] based multi-head self-attention model for solv-
ing the ZSL task. Our main contribution is to introduce ViT for enhancing the visual feature localisation to
solve the zero-shot learning task. Without any object part-level annotation or detection, this is the first attempt
to introduce ViT into ZSL. As illustrated in Figure 1, our method maps the visual features of images to the
semantic space with the help of scaled dot-product of multi-head attention employed in ViT. We have also per-
formed detailed experimentation on three public datasets (i.e., AWA2, CUB and SUN) following Generalised
Zero-Shot Learning (GZSL) setting and achieved very encouraging results on all of them, including the new
state-of-the-art harmonic mean on all the datasets.

2 Related Work

Zero-Shot Learning: ZSL is employed to bridge the gap between seen and unseen classes using semantic
information, which is done by computing similarity function between visual features and previously learned
knowledge [Romera-Paredes and Torr, 2015]. Various approaches address the ZSL problem by learning prob-
abilistic attribute classifiers to predict class labels [Lampert et al., 2009, Norouzi et al., 2014] and by learning
linear [Frome et al., 2013, Akata et al., 2015, Akata et al., 2016], and non-linear [Xian et al., 2016] compatibil-
ity function associating image features and semantic information. Recently proposed generative models syn-
thesise visual features for the unseen classes [Xian et al., 2018, Schonfeld et al., 2019]. Although those models
achieve better performances compared to classical models, they rely on features of trained CNNs. Recently,
attention mechanism is adapted in ZSL to integrate discriminative local and global visual features. Among
them, S2GA [Yu et al., 2018] and AREN [Xie et al., 2019] use an attention-based network with two branches
to guide the visual features to generate discriminative regions of objects. SGMA [Zhu et al., 2019] also applies
attention to jointly learn global and local features from the whole image and multiple discovered object parts.
Very recently, APN [Xu et al., 2020] proposes to divide an object into eight groups and learns a set of attribute
prototypes, which further help the model to decorrelate the visual features. Partly inspired by the success of
attention-based models, in this paper, we propose to learn local and global features using multi-scaled-dot-
product self-attention via the Vision Transformer model, which to the best of our knowledge, is the first work
on ZSL involving Vision Transformer. In this model, we employ multi-head attention after splitting the image
into fixed-size patches so that it can attend to each patch to capture discriminative features among them and
generate a compact representation of the entire image.

Vision Transformer: Self-attention-based architectures, especially Transformer [Vaswani et al., 2017] has
shown major success for various Natural Language Processing (NLP) [Brown et al., 2020] as well as for Com-
puter Vision tasks [Alamri et al., 2021, Dosovitskiy et al., 2021]; the reader is referred to [Khan et al., 2021]
for further reading on Vision Transformer based literature. Specifically, CaiT [Touvron et al., 2021] intro-
duces deeper transformer networks, and Swin Transformer [Liu et al., 2021] proposes a hierarchical Trans-
former, where the representation is computed using self-attention via shifted windows. In addition, TNT
[Han et al., 2021] proposes transformer-backbone method modelling not only the patch-level features but also
the pixel-level representations. CrossViT [Chen et al., 2021] shows how dual-branch Transformer combining
different sized image patches produce stronger image features. Since the applicability of transformer-based
models is growing, we aim to expand and judge its capability for GZSL tasks; to the best of our knowledge,
this is still unexplored. Therefore, different from the existing works, we employ ViT to map the visual in-
formation to the semantic space, benefiting from the great performance of multi-head self-attention to learn
class-level attributes.
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Figure 2: VIiT-ZSL Architecture. An image is split into small patches fed into the Transformer encoder after
attaching positional embeddings. During the training the output of the encoder is compared with the semantic
information of the corresponding image via MSE loss. At inference the encoder output is used to search for the
nearest class label.

3 Vision Transformer for Zero-shot Learning (ViT-ZSL)

We follow the inductive approach for training our model, i.e. during training, the model only has access to the
images and corresponding image/object attributes from the seen classes S = {x,y|x € X,y € Y*}, where
x is an RGB image and y is the class-level attribute vector annotated with M different attributes, as provided
with the dataset. As depicted in Figure 2, a 224 x 224 image x € R7*WxC with resolution H x W and C
channels is fed into the model. The model follows ViT [Dosovitskiy et al., 2021] as closely as possible; hence
the image is divided into a sequence of N patches denoted as x,, € RN*(P2.0) where N = h;—gv. Each patch
with a resolution of P x P is encoded into a patch embedding by a trainable 2D convolution layer (i.e., Conv2d
with kernel size=(16, 16) and stride=(16, 16)). Position embeddings are then attached to the patch embeddings
to preserve the relative positional information of the order of the sequence due to the lack of recurrence in
the Transformer. An extra learnable classification token (z8 = Xclass) 1S appended at the beginning of the
sequence to encode the global image representation. Patch embeddings (z) are then projected thought a linear
projection E to D dimension (i.e., D = 1024) as in Eq. 1. Embeddings are then passed to the Transformer
encoder, which consists of Multi-Head Attention (MHA) (Eq. 2) and MLP blocks (Eq. 3). Before every block,
a layer normalisation (Norm) is employed, and residual connections are also applied after every block. Image
representation (¥) is produced as in Eq. 4.

20 = [Xetass; X0 B X2E; CE; . xVE] + Epos, E € RPZOXD B e RVHDXD (1)
z; = MHA(Norm(z¢_1)) + z¢_1, (=1...L(L=24) )
z¢ = MLP(Norm(z})) + zp, (=1...L 3)
¥ = Norm(z} ) )

In terms of MHA, self-attention is performed for every patch in the sequence of the patch embeddings
independently; thus, attention works simultaneously for all the patches, leading to multi-head self-attention.
Three vectors, namely Query (), Key (K) and Value (V), are created by multiplying the encoder’s input (i.e.,
patch embeddings) by three weight matrices (i.e., W<, WX and WV) trained during the training process to
compute the self-attention. The @) and K vectors undergo a dot-product to output a scoring matrix representing
how much a patch embedding has to attend to every other embedding; the higher the score is, the more attention
is considered. The score matrix is then scaled down and passed into a softmax to convert the scores into
probabilities, which are then multiplied by the V' vectors, as in Eq. 5, where dj, is the dimension of the K
vectors. Since the multi-attention mechanism is employed, self-attention matrices are then concatenated and
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fed into a linear layer and passed to the regression head.

T
e

We argue that self-attention allows our model to attend to image regions that can be semantically relevant for
classification and learns the visual features across the entire image. Since the standard ViT has one classification
head implemented by an MLP, it has been edited to meet our model objective: to predict M number of attributes
(i.e., depending on the datasets used). The motivation behind this is that the network is assumed to learn the
notion of classes to predict attributes. For the objective function, we employed the Mean Squared Error (MSE)
loss, as the continuous attributes are used as in Eq. 6, where y; is the observed attributes, and ¥; is the predicted
ones.

Attention(Q, K, V) = softmax(

W (5)

LM
_ . &.)2
Lmse = i ;:1 (yi —¥i) (6)

During testing, instead of applying the extensively used dot product as in [Xu et al., 2020], we consider the
cosine similarity as in [Gidaris and Komodakis, 2018] to predict class labels. The cosine similarity between the
predicted attributes and every class embedding is measured. The output of the similarity measure is then used
to determine the class label of the test images.

4 Experiments

Implementation Details: All images used in training and testing are adapted from the ZSL datasets mentioned
below and sized 224 x 224 without any data augmentation. We employ the Large variant of ViT (ViT-L)
[Dosovitskiy et al., 2021], with input patch size 16 x 16, 1024 hidden dimension, 24 layers, 16 heads on each
layer, and 24 series encoder. There are 307M parameters in total in this architecture. ViT-L is then fine-tuned
using Adam optimiser with a fixed learning rate of 10~* and a batch size of 64. All methods are implemented
in PyTorch! on an NVIDIA RTX 3090 GPU, Xeon processor, and a memory sized 32GB.

Datasets: We have conducted our experiments on three popular ZSL datasets: AWA2, CUB, and SUN, whose
details are presented in Table 1. The main aim of this experimentation is to validate our proposed method, ViT-
ZSL, demonstrate its effectiveness and compare it with the existing state-of-the-arts. Among these datasets,
AWA?2 [Xian et al., 2017] consists of 37,322 images of 50 categories (40 seen + 10 unseen). Each category
contains 85 binary as well as continuous class attributes. CUB [Wah et al., 2011] contains 11, 788 images
forming 200 different types of birds, among them 150 classes are considered as seen, and the other 50 as
unseen, which is split by [Akata et al., 2016]. Together with images CUB dataset also contains 312 attributes
describing birds. Finally, SUN [Patterson and Hays, 2012] has the largest number of classes among others. It
consists of 717 types of scene, divided into 645 seen and 72 unseen classes. The SUN dataset contains 14, 340
images with 102 annotated attributes.

Table 1: Dataset statistics in terms of granularity, number of classes (seen + unseen classes) as shown within
parenthesis, number of attributes and number of images.

Datasets Granularity | # Classes (S + U) | # Attributes | # Images
AWA?2 [Xian et al., 2017] coarse 50 (40 + 10) 85 37,322
CUB [Wah et al., 2011] fine 200 (150 + 50) 102 11,788
SUN [Patterson and Hays, 2012] | fine 717 (645 + 72) 312 14,340

Evaluation: In this work, we train our ViT-ZSL model following the inductive approach [Wang et al., 2019].
Following [Xian et al., 2019a], we measure the top-1 accuracy for both seen as well as unseen classes. To

LOur code is available at: https://github.com/FaisalAlamri0/ViT-7SL
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capture the trade-off between both sets of classes performance, we use the harmonic mean, which is the primary
evaluation criterion for our model. Following the recent papers (e.g., [Xu et al., 2020], [Chao et al., 2016]), we
apply Calibrated Stacking [Chao et al., 2016] to evaluate the considered methods under GZSL setting, where
the calibration factor v is dataset dependant and decided based on a validation set.

Quantitative Results: We consider the AWA2, CUB and SUN datasets to show the performance of our pro-
posed model and compare the performance with related arts. Table 2 shows the quantitative comparison be-
tween the proposed model and various other GZSL models. The performance of each model is shown in terms
of Seen (S) and Unseen (U) classes and their harmonic mean (H).

Table 2: Generalised zero-shot classification performance on AWA2, CUB and SUN

Models AWA?2 CUB SUN

S U H S U H S U H
DAP [Lampert et al., 2009] 84.71 00 | 0.0 | 679 | 1.7 | 33 | 251 | 42 | 7.2
IAP [Lampert et al., 2009] 876 | 09 | 1.8 | 728 | 02 | 04 | 378 | 1.0 | LS8
DeViSE [Frome et al., 2013] 747 | 17.1 | 27.8 | 53.0 | 23.8 | 32.8 | 30.5 | 14.7 | 19.8
ConSE [Norouzi et al., 2014] 90.6 | 05 | 1.0 | 722 | 1.6 | 3.1 | 399 | 6.8 | 11.6
SSE [Zhang and Saligrama, 2015] 825 | 81 | 148 | 469 | 85 | 144|364 | 2.1 | 40
SJE [Akata et al., 2015] 739 | 8.0 | 144|592 | 235 | 33.6 | 30.5 | 14.7 | 19.8
ESZSL [Romera-Paredes and Torr, 2015] | 77.8 | 59 | 11.0 | 63.8 | 12.6 | 21.0 | 279 | 11.0 | 15.8
LATEM [Xian et al., 2016] 773 | 11.5 | 20.0 | 57.3 | 15.2 | 24.0 | 28.8 | 147 | 19.5
ALE [Akata et al., 2016] 81.8 | 14.0 | 239 | 62.8 | 23.7 | 344 | 33.1 | 21.8 | 26.3
SAE [Kodirov et al., 2017] 822 | 1.1 | 22 | 540 | 7.8 | 13.6 | 180 | 88 | 11.8
AREN [Xie et al., 2019] 929 | 15.6 | 26.7 | 78.7 | 389 | 52.1 | 38.8 | 19.0 | 25.5
SGMA [Zhu et al., 2019] 87.1 | 37.6 | 52.5 | 71.3 | 36.7 | 48.5 - - -
APN [Xu et al., 2020] 78.0 | 56.5 | 655|693 | 653 | 67.2 | 34.0 | 41.1 | 37.6
*GAZSL [Zhu et al., 2018] 86.5 | 192 | 314 | 60.6 | 239 | 343 | 345 | 21.7 | 26.7
*f-CLSWGAN [Xian et al., 2018] 64.4 | 57.9 | 59.6 | 57.7 | 43.7 | 49.7 | 36.6 | 42.6 | 394
Our model (ViT-ZSL) 90.0 | 51.9 | 65.8 | 75.2 | 67.3 | 71.0 | 55.3 | 44.5 | 49.3

S, U, H denote Seen classes ()*), Unseen classes (V*), and the Harmonic mean, respectively. For each scenario, the
best is in red and the second-best is in blue. * indicates generative representation learning methods.

DAP and IAP [Lampert et al., 2009] are some of the earliest works in ZSL, which perform poorly compared
to other models. This is due to the assumptions claimed in these approaches regarding attributes dependency.
In real-world animals with attributes ‘terrestrial’ and ‘farm’ are dependent but are assumed independent by
such models, which are noted as incorrect by [Akata et al., 2016]. Our model ViT-ZSL does not assume this,
but rather it considers the correlation between attributes, which self-attention helps to achieve by considering
both positional and contextual information of the entire sequence of patches. DeViSE [Frome et al., 2013]
and ConSE [Norouzi et al., 2014] learn a linear mapping between images and their semantic embedding space.
They both make use of the same text model trained on 5.4B words from Wikipedia to construct 500-dimensional
word embedding vectors. Both use the same baseline model, but DeViSE replaces the last layer (i.e., softmax
layer) with a linear transformation layer. In contrast, ConSE keeps it and computes the predictions via a
convex combination of the class label embedding vectors. ConSE, as presented in Table 2 outperforms DeViSE,
but DeViSE is generally performing better on the unseen classes. Similarly, SJE [Akata et al., 2015] learns
a bilinear compatibility function using the structural SVM objective function to maximise the compatibility
between image and class embeddings. ESZSL [Romera-Paredes and Torr, 2015] uses the square loss to learn
bilinear compatibility. Although ESZSL is claimed to be easy to implement, its performance, in particular
for GZSL, is poor. ALE [Akata et al., 2016], which belongs to the bilinear compatibility approach group,
performs better than most of its group member. LATEM [Xian et al., 2016], instead of learning a single bilinear
map, extends the bilinear compatibility of SJE [Akata et al., 2015] as to be an image-class pairwise linear by
learning multiple linear mappings. It performs better than SJE on unseen classes but with a lower harmonic
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Figure 3: Representative examples of attention. First row: Original images, Middle: Attention maps, and
last: Attention fusions. From left to right, ViT-ZSL is able to focus on object-level attributes and learn objects
discriminative features when objects are partly captured (first three columns images), occluded (fourth column
images) or fully presented (last two columns images).

mean due to its poor performance on seen classes. Generative ZSL models such as GAZSL [Zhu et al., 2018],
and f-CLSWGAN [Xian et al., 2018] are seen to reduce the effect of the bias problem due to the inclusion of
synthesised features for the unseen classes. However, this does not apply to our method, as no synthesised
features are used in our case; instead, solely the features extracted from seen classes are used during training.
AREN [Xie et al., 2019], SGMA [Zhu et al., 2019] and APN [Xu et al., 2020] are non-generative ZSL models
focusing on object region localisation using image attention. They are the most relevant works to ours as
attention mechanism is included in these models architecture. However, they consist of two branches in their
models, where the first learns local discriminative visual features and the second captures the image’s global
context. In contrast, our model uses only one compact network, where the input is the image patches so that
the global and local discriminative features can be learned using the multi-head self-attention mechanism.

Our model ViT-ZSL, as shown in Table 2, achieves the best harmonic mean on AWA?2. It also performs
as the third best on both seen and unseen classes. Compared with the other models, it scores 90.02%, where
the highest is the highest is AREN with 92.9% accuracy. As the comparison illustrated follows the GZSL
setting using the harmonic mean as the primary evaluation metric for GZSL models, ViT-ZSL outperforms all
state-of-the-art models. In terms of the CUB dataset, our method achieves the second-highest accuracy for seen
classes, but the highest for unseen. In addition, our ViT-ZSL obtains the best harmonic mean score among all
the reported approaches. On SUN datasets, which has the most significant number of object classes among
other datasets, our model performs as the best for both seen and unseen classes, achieving a harmonic mean of
47.9%, the highest compared to all other models.

Attention Maps: In Figure 3, we show how our model attends to image regions semantically relevant to the
object class. For example, in the images of the first three columns, the entire objects’ shapes are absent (i.e.,
only the top part is captured), and in the image in the fourth column, the groove-billed ani bird is impeded by a
human hand. Although these images suffer from occlusion, our model accurately attends to the objects in the
image. Thus, we believe that ViT-ZSL definitely benefits from the attention mechanism, which is also involved
in the human recognition system. Clearly, we can say that our method has learned to map the relevance of
local regions to representations in the semantic space, where it makes predictions on the visible attribute-based
regions. Similarly, in the last two columns images of Figure 3, it can be noticed how the model pays more
attention to some object-level attributes (i.e., Deer: forest, agility, furry etc., and Vermilion Flycatcher: solid
and red breast, perching-like shape, notched tail). It can also be noticed that the model focuses on the context
of the object, as in the second column images. This can be due to the guidance of some attributes (i.e., forest,
jungle, ground and tree) which are associated with leopard class. However, as shown in the first column, the
model did not pay much attention to the bird’s beak compared to the head and the rest of the body, which
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needs to be investigated further and building an explainable model as in [Xian et al., 2019b] could be a way to
accomplish this.

5 Conclusion

In this paper, we proposed a Vision Transformer-based Zero-Shot Learning (ViT-ZSL) model that specifically
exploits the multi-head self-attention mechanism for relating visual and semantic attributes. Our qualitative
results showed that the attention mechanism involved in our model focuses on the most relevant image regions
related to the object class to predict the semantic information, which is used to find out the class label during
inference. Our results on the GZSL task, including the highest harmonic mean scores on the AWA2, CUB and
SUN datasets, illustrate the effectiveness of our proposed method.

Although our method achieves very encouraging results for the GZSL task on three publicly available
benchmarks, the bias problem towards seen classes remains a challenge, which will be addressed in future
work. Training the model in a transductive setting, where visual information for unseen classes could be
included, is a direction to be examined.
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Abstract

Image and video reconstruction are well-researched problems in computer vision. Several problems
involving reconstruction are actively researched areas in computer vision such as image denoising and de-
blurring, super resolution, inpainting etc. In recent years, the state-of-the-art (SoA) in these areas has come
from deep learning methods, which train neural networks for the specific task, often in a supervised man-
ner. Naturally, the choice of the loss function in these algorithms is important. In this paper, we study a
general-purpose loss function that can be used for several SoA image or video reconstruction method for
performance enhancements. We show that the addition of the novel loss function during training improves
the performance of SoA algorithms in five different image and video reconstruction tasks.

Keywords: Image and Video Reconstruction, Loss Function, Frequency Domain, Fast Fourier Transform.

1 Introduction

The non-linear nature of image and video reconstruction makes it a difficult task. In other words, the desired
output may not linearly map to the input due to the presence of distortions such as noise, incorrect exposure,
inconsistent colours, poor resolution, etc. Recently, Convolutional Neural Networks (CNNs) have proven quite
effective in several reconstruction tasks such as image deblurring [Kupyn et al., 2019], super-resolution [Dong
et al., 2015], image inpainting [Xie et al., 2019], exposure correction [ Yadav et al., 2021], denoising [Lehtinen
et al., 2018] etc. CNNs by design are capable of learning complex, non-linear mappings between different data
domains. But despite the superior performance, they suffer from most, if not all of the distortions mentioned
above. In a recent work, [Yadav et al., 2021], proposed a generic loss function by exploiting the frequency
domain and showed improvements in image exposure correction in several of these aspects. However, the
capacity of their approach in other reconstruction tasks is still not explored and therefore remains an open
problem. In this paper, we extend their work by studying a wide variety of image and video reconstruction tasks
namely deblurring, super-resolution, inpainting, and denoising. In the rest of this section, we briefly highlight
some of the task specific challenges and the intuition behind addressing these challenges in the frequency
domain.

In image deblurring, the aim is to remove blur from images which can be caused by many factors such
as unsuitable focal length or aperture size, low light, low frame rate and fast motion, camera shake, or lack
of focus. Blur can also be of different types such as motion blur, gaussian blur, bokeh blur, zoom blur, etc.
These different blur types make this problem ill-posed and challenging, which has been addressed by many
deep learning and classical solutions. In the fast Fourier transform (FFT), high and low frequency components
present away from and close to the center, respectively. Image blur generally results in a reduction of high-
frequency components of the image. Thus, the frequency coefficients of a blurred image are dominantly skewed
towards low-frequency coefficients as shown in figure 1.

In super-resolution, the goal is to upscale the image to a higher resolution while preserving the high-
frequency components. It has several applications such as displaying low-resolution pictures on giant screens,
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person re-identification from low-resolution surveillance cameras, image classification [Hao et al., 2018], edge
detection [Dai et al., 2016] etc. Image interpolation or upsampling is a basic form of super-resolution. It in-
creases the resolution of the image by averaging the nearby pixels to approximate the newly added pixels. The
averaging operation introduces blur to the image and the loss of sharp edges and other high-frequency compo-
nents, as shown in figure 1. Recent deep learning-based methods for super-resolution can learn to accurately
predict high-frequency information by performing an inverse non-linear mapping.

In image-inpainting, the goal is to fill in the pixels of an image that are missing or occluded such as oc-
clusions in the form of subtitles in videos or by removing unwanted objects from the image. It is a difficult
problem to solve due to the ill-posed nature of filling in the missing/occluded pixels: For an 8-bit image, there
are 28 possible values for a missing pixel. However, prediction of the missing pixels can be assisted by CNN
based networks which take advantage of the spatial correlations that are characteristic in most natural images.
To fill in an occluded region in an image, the frequency domain can help fill in pixels such that the filled-in
region matches the frequency characteristics of the surrounding pixels. Small occlusions in an image can lead
to dramatic changes in its frequency domain representation, as shown in figure 1.

In image and video denoising, the aim is to separate noise from the original data. There are a variety of
causes for noise. It can be caused by the camera heat generated during the camera’s operation or it can be
external due to low light i.e. transmission noise. Each type of noise has a particular characteristic: it can be
random, or it can be related to the underlying image. For example, salt and pepper noise is independent of
the underlying image, while multiplicative noise is dependent on the underlying image. Such diversity makes
denoising a cumbersome problem to solve. Often, noise is better represented in the frequency domain because
its frequency components can be quite distinct from the frequency components in the original image, as shown
in figure 1. The FFT of the noisy image in figure 1 is more crowded than the FFT of the original image. Deep
learning-based approaches work well for image denoising due to their ability to understand spatial relationships
in an image [LeCun et al., 1995]. This ability allows deep learning-based models to accurately estimate the
correct pixel values in noisy images.

The goal of this work is to use a loss function that can improve existing SoA image and video reconstruction
approaches in deep learning. Loss functions quantify how different the model’s output is from the ground truth.
This value is used during the back-propagation of the model training phase. Back-propagation is then used
for re-tuning the weights of the model so that the loss function gets minimized. To minimize a loss function
at a faster rate, its rate of change should be higher than that of other loss functions at the beginning of the
training phase. This can be achieved by using a loss function that measures the distance in both the image
and the frequency domain. This increases the room for improvement by presenting an error from diverse
representations.

In general, the frequency domain is often used in the computer vision community for image processing and
digital signal processing. But, to the best of our knowledge, barring [ Yadav et al., 2021], it has not been used for
general-purpose loss functions for image and video reconstruction tasks. Frequency domain transforms have
characteristics that make them suitable for use in image and video reconstruction. We show this in figure 1.
The common deformations in the images lead to dramatic changes in the frequency domain. We theorize that
compensating for these dramatic changes in the frequency domain may improve the existing image and video
reconstruction tasks. The comparison in figure 1 shows that the frequency domain provides value in locating
frequencies that would be hard to locate in the image domain.

There are many frequency domain transforms available to build such a loss function, Namely, DCT, FFT,
DFT, etc. DCT is used for image compression because it can condense an image’s frequency components into a
very small space. This is unfortunately the opposite of what a loss function should ideally do. When comparing
DFT to DCT, frequency domain components are spread out over a larger area for DFT. This makes it more
suitable to be used in a loss function. The time complexity required for DFT is of the order of N? where N is
the number of pixels in an image. Next, FFT is another frequency domain transform that can be used to create
a frequency domain loss function. It is a faster implementation of the DFT which also works for continuous
signals, making it more general-purpose than DFT. Time complexity to compute the FFT of an image is equal
to N xlog N. This makes it an ideal choice to be used as a loss function for image reconstruction tasks. It offers

September 2-3 , 2021, DCU 10 978-0-9934207-6-4



Proceedings of the 23rd Irish Machine Vision and Image Processing conference IMVIP 2021

similar boosts in accuracy as [Jiang et al., 2020], and is more general-purpose than [Jiang et al., 2020] due to
its compatibility with continuous signals, and is computationally more efficient.

Our contribution in this study is that we thoroughly investigate the capacity of the frequency loss func-
tion proposed by [Yadav et al., 2021] in each of the aforementioned domains — image deblurring, image
super-resolution, image inpainting, and image and video denoising and subsequently, notice significant im-
provements. For each application, we choose the SoA method, retrain it using the frequency loss and compare
the performance both quantitatively and qualitatively.

2 Related Works

Loss Functions: In the literature, several loss functions are available for model training. We divide these
loss functions into two categories: general purpose loss functions and specific purpose loss functions. General
purpose loss functions such as L1 loss and L2 loss are commonly used in image and video reconstruction
tasks. Specific loss functions are developed by researchers to address a particular problem. They are usually
not general-purpose or are not tested for a wide variety of problems. L1 loss function is the summed absolute
difference between the output and the ground truth. L2 loss function is similar to the L1 loss function. However,
the difference between the output and the ground truth gets squared in L2 loss. Other general-purpose loss
functions have been shown to give favourable results but are not adopted as an industry standard yet.

[Mechrez et al., 2018] present a loss function that does not require paired datasets. Instead of having to
compare the output with its aligned ground truth, their loss function can deal with unaligned image pairs. To
do this, they find contextual similarity between features, which can be present in different areas of the image.
They apply this loss function in four SoA models for style transfer [Gatys et al., 2016], single-image animation
[Johnson et al., 2016], puppet control [Isola et al., 2017], and domain transfer [Zhu et al., 2017]. Since these
problems deal with unaligned datasets, they were unable to provide quantitative comparisons with the SoA
models. However, they did present comparable or improved qualitative results. In this paper, we try to show
how the novel loss function introduced by [Yadav et al., 2021] can improve existing SoA approaches quantita-
tively.

Image and Video Reconstruction: Due to the plethora of work that exists in this area, an exhaustive discussion
is beyond our scope. We mention the baselines compared with and other papers directly related to this work. A
prominent SoA approach for deblurring is DeblurGAN-v2 [Kupyn et al., 2019] which improves the efficiency
of the entire working of its predecessor, DeblurGAN [Kupyn et al., 2018]. For super-resolution, we build on
SRCNN [Dong et al., 2015] that uses a L2 loss. Newer approaches such as [Ledig et al., 2017, Wang et al.,
2018] use GAN based loss functions to achieve impressive results. In image inpainting, the goal is to predict the
obscured or missing areas of an image. [Xie et al., 2019] present an approach by combining style, perceptual
and L1 loss. Other recent important approaches include [Yu et al., 2019, Yu et al., 2018]. For image denoising
approach, the SoA is Noise2Noise [Lehtinen et al., 2018], which performs denoising using a U-net architecture
[Ronneberger et al., 2015] and L2 loss. A recent comprehensive survey of recent approaches in image denoising
using deep learning can be found in [Tian et al., 2020]. A recent SoA approach in video denoising is VideNN
[Claus and van Gemert, 2019]. Their model is based on two types of networks: spatial denoising and temporal
denoising. Spatial denoising is built upon the architecture provided by [Zhang et al., 2017] which is a SoA
CNN architecture for gaussian denoising.

3 Proposed Approach

To devise a loss function based on a mathematical function such as FFT, we need to ensure that the loss function
stays differentiable. FFT outputs a complex signal along with a real signal. This output denotes the sines and
cosine waves of all the frequency present in the image. Unfortunately, this output is not reliably differentiable
due to the presence of the complex domain signal. To make it differentiable, we compute the magnitude of
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the FFT and convert it into a purely real signal by computing its magnitude. After creating a differentiable
frequency domain transform, a loss function should also compute the distance between the model output and
the ground truth. To do this, we use either L1 or L2 distance between the two as shown in 1, where ygr and yo
represent ground-truth and prediction, respectively.

n
Li=) lyer—yol, La=XY" (yor - y0)? (1)
i=1

For an output image I;, whose ground truth is I», the F-loss is defined in equation 2. Here, K is a scaling factor,
it is the scale at which the loss is being computed. For example, to calculate the loss at half the resolution, K is
set to 2, for calculating loss at quarter the resolution, K is set to 4. FFT(I) refers to the fast Fourier transform
of image I. M and N are the number of pixels horizontally and vertically of the input images. We compute this
loss at different scales (K) of the images and obtain the loss function (F-loss) shown in equation 3.

i LS ¥
Lipr = 3 IFFTUDI = IFFT (L)l )

MX =X = =X
FFTpipai(h, ) =L} +Lia2 +Lic 3)

Our approach in all the experiments in the following section is to first train and test the chosen models in
their default settings and do it again but with an additional F-loss term (equation 3) in the original loss function.
We then assess the causal results of adding the F-loss in the loss function of each approach.

N M, N M_N
1

4 Experiments and Results

To assess the effectiveness of F-loss, we experiment on six SOA deep learning-based approaches for image and
video reconstruction. To prove a causal result of the loss function, we only change the loss function and keep
all other settings unchanged from the original work. Depending on how the SoA approaches were coded, we
accordingly used the PyTorch or the Tensorflow version of the frequency loss function.

4.1 Deblurring

Our framework for deblurring is based on DeblurGAN-v2 [Kupyn et al., 2019]. The loss function used in this
approach is described in equation 4. The overall loss, L, depends on three other losses. L, is the pixel-wise loss,
which, in this case, is the L loss. This loss function works reasonably well in most general applications but
it tends to yield over-smoothened images [Ledig et al., 2017]. To counter this over-smoothening, the content
loss Ly is used which compares the output’s and ground truth’s high-level features calculated from pre-trained
CNNs. Finally, Lagy is used to stabilize the training process of the GAN network by computing loss based
on the generator and the discriminator networks’ outputs. The difference in the FFT representations is more
obvious than the difference in the spatial-image representations.
We hypothesize that F-loss, due to its operation in the frequency domain, will aid the network

[Kupyn et al., 2019] in recovering the lost high-frequency components more effectively. To test this, we first
trained the given model from scratch using the default hyper-parameters and training settings. The GoPro
dataset [Nah et al., 2017] was used for this, as this was the same dataset that was used in the original approach.
We then modified the equation 4 to include the F-loss, as shown in equation 5. We then repeated the same
training procedure once again from scratch. In equation 5, Lr is the F-loss, and « is the factor value that was
set as 0.5 by a trial and error process. The testing was performed on the training-testing split of the GOPRO
dataset as provided by the creators. The quantitative results of this experiment are shown in table 1. The
addition of F-loss improves the results in both the PSNR and SSIM metrics.

L=0.5%L,+0.006* Ly +0.01 * Lygy 4)

L=05%Ly,+0.006% Ly +0.01 % Lygy +a * Lp (5)
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Figure 1: First row consists of the natural image and its deformed versions. Second row is the FFT of the above
row. The difference between the FFTs of the natural image is more evident than the difference between the
natural images themselves.

Task Approach PSNR | SSIM
Deblurring DBGANV2[Kupyn et al., 2019] 29.18 | 0.89
Deblurring DBGANV2-F-loss 2949 | 091

Super-Resolution SRCNN[Dong et al., 2015] 28.86 | 0.92
Super-Resolution SRCNN-F-loss 29.10 | 0.94
Image-Inpainting LBAM([Xie et al., 2019] 26.11 | 0.86
Image-Inpainting LBAM-F-loss 26.39 | 0.87
Exposure correction Chen[Chen et al., 2018] 28.60 | 0.767
Exposure correction Chen-F-loss 28.89 | 0.776
Image denoising Gaussian-Clean[Lehtinen et al., 2018]) | 30.30 | 0.87
Image denoising Gaussian-Clean-F-loss 30.80 | 0.89
Video denoising VideNN][Claus and van Gemert, 2019] 31.5 -
Video denoising VideNN-F-loss 32.48 -

Table 1: Quantitative results on SoA approaches before and after adding F-loss to the loss function. This
proves a quantitative causal improvement upon the addition of F-loss for a wide variety of image and video
reconstruction tasks.

4.2 Super-resolution

We base our framework for super-resolution on SRCNN [Dong et al., 2015]. To perform this experiment, we
first trained the SRCNN from scratch, keeping all the hyper-parameters the same as they were defined by the
authors. The dataset used for this training was the BSD200 dataset [Martin et al., 2001]. We then added the
F-loss to the L2 loss function. This new loss function is described in the equation 6, where L is the computed
value of the F-loss between the output high-resolution image and the ground truth high-resolution image and a
was set to 1. With this new loss function, we repeated the same training procedure from scratch. The evaluation
dataset for this was the set5 dataset [Bevilacqua et al., 2012]. The quantitative results of training [Dong et al.,
2015] model on set5, with and without F-loss, are shown in table 1. The addition of F-loss improves the results
in both the PSNR and SSIM metrics.

n
L= Z(yGT—yO)2+(X*LF (6)
i=1

4.3 Image Inpainting

The framework for this task is based on [Xie et al., 2019]. The LBAM approach employs a variety of loss
functions, their collective formula is shown in equation 7. Here, 11, A2, A3, A4 are empirically setas A; =1, 1,
=0.1, A3 = 0.05, A4 = 120. L;, is the L1 loss, which the authors call "Pixel Reconstruction Loss". Lyerc is the
perceptual loss, which assesses the high level information of the output. The Lp,; is defined on the VGG-16
network [Simonyan and Zisserman, 2014], which is pre-trained on ImageNet dataset [Deng et al., 2009]. Lg;ye
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is the "style Loss" which they claim recovers detailed textures better. L4, is the widely used adversarial loss
[Goodfellow et al., 2014] which is computed by the discriminator network.

The LBAM model was trained from scratch using the default parameters provided by the authors. The
dataset used for this experiment was the Paris StreetView dataset [Philbin et al., 2008]. This is the same dataset
that was used in the original LBAM paper [Xie et al., 2019]. Next, we repeated the same training procedure
but used the loss function described in equation 8. In equation 8, we add the F-loss in the original loss function
(equation 7). The F-loss is controlled via the a factor, which is set empirically to 1.05. The training and testing
split was the same as that used by the authors of LBAM. The quantitative results of this experiment are shown
in table 1. The addition of F-loss improves the results in both the PSNR and SSIM metrics.

L=MAMLy, +A2Lagqy+A3Lperc + AaLgyie @)

L=MLj +A2Laay+ A3Lperc + /14Lstyle +aLp ®)

4.4 Exposure Correction

We would like to point the readers to this paper’s parent work [Yadav et al., 2021]. That publication is focused
entirely on the quantitative and qualitative improvements in an SOA exposure correction model [Chen et al.,
2018] after the addition of F-loss (table 1).

4.5 Image Denoising

We choose the framework by [Lehtinen et al., 2018] as the starting point for image denoising. We first trained
the given network from scratch using the default settings as provided by the authors. We trained this on the
Set14 dataset [Zeyde et al., 2010]. Next, we repeated the prior process using the same model and the same
dataset, but this time adding the F-loss as described in equation 9 to the original loss function. The a was set to
1. The quantitative results of this experiment are shown in table 1. The addition of F-loss improves the results
in both the PSNR and SSIM metrics.

L=L)+axLp )

4.6 Video Denoising

For video denoising we start from VideNN [Claus and van Gemert, 2019]. Their model is based on two types of
networks: spatial denoising and temporal denoising. Spatial denoising is built upon the architecture provided
by [Zhang et al., 2017] which is a SoA CNN architecture for gaussian denoising. However, this architecture
also works well for realistic signal-dependent noise. Three consecutive frames are the input for three of such
spatial denoising models. For the output, these spatially denoised three frames are then fed to the temporal
denoising network. The temporal denoising network then denoises the middle frame of the three frames that it
receives. Both the spatial and temporal networks estimate the noise in the frames and then subtract it from the
noisy input.

The L2 loss is used for both temporal and spatial denoising networks. In the previous experiment, we
showed how an image-denoising network can benefit from the addition of the F-loss. Similarly, we hypothesize
that the addition of the F-loss in a video-denoising network will also assist it in getting better quantitative
results. To test this, we first trained the given network from scratch using the default settings as provided by
the authors. We trained this on the Waterloo Exploration dataset [Ma et al., 2017]. Next, we repeated the prior
process using the same model and the same dataset, but this time adding the F-loss as described in equation
10. The a was set to 1. The quantitative results of this experiment are shown in table 1. The addition of F-loss
improves the results for the PSNR metric.

n
L= Z(ygroundTruth_youtput)z+a*LF (10)
i=1
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5 Conclusion, Limitations and Future Work

In this paper, we explored the applications of a novel loss function for image and video reconstruction. We
show that the addition of this loss function to six SoA approaches helps them in surpassing their results. One
limitations of this loss function is that the factor value a@ needs to be manually fine-tuned. We also hope to
apply this loss function to more deep learning SoA video reconstruction approaches. In future work, we can
also improve results in applications such as deblurring and super-resolution with an adjustment. The disparity
between the FFT of ground truth and output mainly arises for the high-frequency components. Therefore, a de-
sirable modification could be to create a dynamic weighted F-loss function for deblurring and super-resolution
that adjusts its weightage of the high or low-frequency components. If it consistently sees a higher disparity
in the high or low-frequency regions, then it assigns a higher weight to those regions. This will enable a faster
convergence, and further reduce the training times of the respective models.
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Use of Saliency Estimation in Cinematic VR Post-Production to
Assist Viewer Guidance
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Abstract

One of the challenges facing creators of virtual reality (VR) film is that viewers can choose to view the
omnidirectional video content in any direction. Content creators do not have the same level of control on
viewers’ visual attention as they would on traditional media. This can be alleviated by estimating the visual
attention during the creative process using a saliency model, which can provide a probability as to what
would draw a viewer’s eye. In this study, we analyse both the efficacy of omnidirectional video saliency
estimation for creative processes and the potential utility of saliency methods for directors. For this, we
use a convolutional neural network-based video saliency model for omnidirectional video. To assist the
directors in viewer guidance, we propose a metric that provides a measure of saliency estimation in the
intended viewport. We also evaluate the selected saliency model, AVS360, by comparing the output of this
saliency model to the actual viewing direction. The results show that the selected saliency model can predict
the viewers’ visual attention well and the proposed metric can provide useful feedback for content creators
regarding possible distractions in the scene.

Keywords: omnidirectional video, 360 degree video, saliency, cinematic VR

1 Introduction

Virtual reality (VR) film, also known as cinematic VR, is a form of VR entertainment that utilises among other
formats omnidirectional (also known as 360-degree) video. Visual language in VR is still in development, and
currently, the techniques used to relate a narrative to viewers in the form are derived from those of traditional
cinema [1]. As the viewer has the freedom to look in any direction of the 360-degree environment that they
are present in within the format [2], the director of the content must ensure that the narrative is observed as
intended by the viewer and to do so in an immersive manner [3].

One method in which to obtain a probability of how a viewer may view a scene is through the use of
computational saliency. Saliency models have been developed to evaluate what attracts the human eye within
visual scenes [4]. From psychological studies, it is said that bottom-up and top-down processes take place.
Bottom-up being the initial attraction based on the physical properties of the image, then the top-down process
begins which relates to the task the viewer has while observing the image [5]. These computational models
have also been adapted for use within 360-degree video [6].

Using saliency models to estimate the visual attention for a VR film could help the content creator to
attract viewers’ attention to areas which they deem important to the understanding of the narrative and gain
an understanding of other competing salient areas. To allow this, the saliency models can be integrated into
post-production environments, as can be seen in Fig. 1.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under the
Grant Number 15/RP/27760.
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Figure 1: Mock up of a saliency estimator in a post-production environment. The director’s cut and corre-
sponding viewport are visible on the RGB image from the film frame and the saliency estimate. The saliency
estimate shows that the director’s cut viewport is salient, but there is also a region that could compete for
viewers’ attention. Use of saliency estimation algorithms allows for intervention during post-production.

This paper investigates the effectiveness of using a saliency model in post-production environments, aiming
to assist the directors in viewer guidance. With this aim, we build a new metric (i.e., viewport-based saliency
ratio - VPSR) that can help directors in concentrating the viewers’ visual attention and optimising the VR film in
the post-production. The proposed VPSR metric can be used with different 360-degree video saliency models.
To validate the proposed VPSR metric, we used an omnidirectional video saliency model, i.e., AVS360 [6]
developed in our research group for saliency prediction in ODVs (omnidirectional video), and computed the
saliency on a VR film database with viewers’ visual attention and annotations of director’s intended viewing
areas, i.e., Director’s Cut database [7]. To find out the answer to “How successful is the selected saliency model
in predicting the points that attract visual attention?”, we first measure the saliency model’s output for all the
frames of the omnidirectional video. For different contents, the results are then compared to ground truth visual
attention to see how well the saliency prediction model performed. Secondly, to answer “How successful is
VPSR in finding frames that need attention?”, we report the frame-wise results for the proposed viewport-based
saliency ratio metric, and we measure how well the director’s preferred viewport area is related to the points of
saliency within the frame as predicted by the model. Given that AVS360 predicts viewers’ attention with high
accuracy, the results show the VPSR metric can identify the frames of the video that needs further attention.
Our investigation concludes that the use of the proposed metric on saliency estimation methods can identify
cases where attention guidance may fail, which can be useful for directors to take appropriate action.

2 Related Work

Among the techniques used by filmmakers in order to communicate their message to the audience are cine-
matography, mise-en-scene, sound, and editing [8]. In addition to this, various other methods of guiding the
viewer within a VR film have been explored. Investigating the methods for guidance, Speicher et al. [9] found
that giving the viewer an object to follow performed best. Editing from cinematic VR has also formed an area
of research [10]. A comprehensive review of papers that have investigated guidance within VR and augmented
reality systems can been found in [11].

In order to investigate the ability of techniques derived from traditional cinema within a 360-degree envi-
ronment, Knorr et al. [7] developed a database which included the creator’s intended viewing direction at all
times throughout the film. This intended viewing direction was given the title of the “Director’s Cut” (DC),
and this point and corresponding viewport are named as “DC point” and “DC viewport” throughout this paper.
These intended viewing directions were then compared to actual viewing directions of 20 participants to see
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(a) Viewport - Q (b) Weight map - W (c) Saliency map - S (d) Thresholded saliency map - Ssg

Figure 2: Visualisation of the (a) viewport, (b) weight map, (c) whole saliency map for “Luther” video -
Frame #4096 with overimposed viewport, and (d) thresholded saliency map of the same frame for p = 50 with
overimposed viewport. Please refer to Eqn. 4 for the computation of the VPSR metric.

how viewers consume VR films and how it relates to directors’ intentions. Further studies analysed certain
elements of the devices used within the films in order to attract the viewers’ attention [12] and the styles of
cuts, where one scene transitions to another, and their effects on viewer behaviour within the films [13].

To anticipate the user behaviour and estimate viewers’ visual attention, saliency estimation methods are
developed in image processing and computer vision communities [14]. Due to their spherical nature, omnidi-
rectional images and videos used in immersive systems and VR film are expected to have a different interaction
paradigm compared to traditional images and video. How people consume omnidirectional images [15] and
video [16] has been explored in the past. Many saliency estimation methods have been developed in the last
20 years [14]; however, more recent advances in the field have been made due to machine learning [17]. An
example as to how these models have been used in omnidirectional images can be found in the work of Mon-
roy et al. [18] referred to as SalNet360, where the spherical coordinates of the pixels are taken into account.
AVS360 [6] which is the saliency model used in this study is a more recent model that caters for omnidirec-
tional video. This model built on work completed in [19]. Development in this area has also included using
audio information [20].

To investigate the use of saliency in VR films, we examined the relationship between the SalNet360 saliency
estimator and the viewer fixation points at plot points in our previous study [21]. In this earlier study, we
focused on plot points in particular and discussed the results for the selected frames. In this paper, differently
than in [21], we use AVS360, and we aim to focus on developing a tool that could be used by directors and
content creators to identify regions in the scene that could distract viewers from intended viewing areas. To the
best of our knowledge, this is the first metric of its kind that will inform directors and content creators.

3 Proposed Metric

In this paper, we propose a new metric named viewport-based saliency ratio (VPSR) to address the need for a
tool that allows directors to optimise their cinematic VR content during post-production. The main goal for this
metric is to provide a score to describe the ratio of total probability of estimated saliency within the director’s
intended viewport. The secondary goal for this metric is to warn the director for possible distractions in the
scene that can cause loss of viewers’ attention. These distractions then can be avoided using, e.g., virtual effects
during post-production.

For our VPSR metric, we firstly create a viewport area around the DC point in each frame, which corre-
sponds to the viewport area of the HMD (Head Mounted Display) used in the database study (i.e., an Oculus
Rift CV1 headset). Following this, a viewport-based saliency ratio is calculated as follows:

Zu,veQ S(u, v)W(u, )

VPSR(S,Q) =
M oEN S, )Wy, v)

(D

where u and v are the horizontal and vertical pixel locations of an omnidirectional frame of M x N spatial
resolution, Q is the viewport area as described above (see Fig. 2.(a)), S(u, v) is the saliency map value at (u, v)
location, and W is the spherical weighting map. In equirectangular projection, the originally spherical content
is increasingly distorted (stretched) along the vertical direction, as we know from geographical maps. The
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Viewport on Saliency Fixations on Saliency

(a) “Jaunt” - Frame #3680 - VPSR: 0.677 - VPSR5p: 0.909

_

(b) “Luther” - Frame #4690 - VPSR: 0.216 - VPSR50: 0.060

(c) “Jaunt” - Frame #0848 - VPSR: 0.018 - VPSR5g: 0

Viewport on RGB Frame

Figure 3: Visualisation of viewers’ fixations and viewport corresponding to director’s intention from the Direc-
tor’s Cut database [7]. From left to right, (left) the RGB film frame with DC point (red circle) and corresponding
viewport (white overlay), (middle) saliency map with DC point (red circle) and corresponding viewport (white
overlay), and (right) saliency map with fixation locations (red circles) for two video contents: (a,c) “Jaunt” and
(b) “Luther”.

weight map W counters this effect by accounting for spherical distortions, and it gives all parts of the image
appropriate contribution to the metric. Here we use the same map as WS-PSNR [22] model, see Fig. 2.(b).

Looking at the distributions of the saliency values with the viewport in Fig. 2.(c) and the fixation distribu-
tions in Fig. 3, we notice that the lower saliency values might not attract a lot of viewer fixation. Therefore,
we try to generalize the VPSR metric using the saliency values with highest probability. For this, we first com-
pute the histogram of the saliency map S and divide the saliency values into B different bins of #;(S), where
i € [1, B]. Then, taking the highest probability values into account first, we consider the p% of the total saliency
and find a threshold value 7 for this p as follows:

B
Y () - % Y hi(S) )
i=T i=1

Tp= argimn

where B is taken as B = 256 for this study. Afterward, using this threshold value, we compute the corresponding
thresholded saliency map S, as follows (see Fig. 2.(d)):

S(w,v), if S(u,v)=1)

Sp(u,v) ={ 3)

0, if S(u,v) <7)p

This ensures that we always start considering the high probability values. In the last step, we compute VPSR,

as below:
Y uweq Sp(u, YW (u, v)

M SN Sy (u, )W (w,v)

where S, (u, v) is the thresholded saliency map value at (1, v) location. We can notice that Sygp = S, and Eqn. 4
is the more generic version of Eqn. 1, i.e., VPSR;99 =VPSR.

VPSR,(S,Q) = “
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The proposed VPSR metric measures how well the DC viewport captures the estimated saliency compared
to the whole saliency map. The metric is bounded between [0, 1], where O means no saliency values are under
the viewport and 1 means all are under the viewport. Sample VPSR and VPSRgq results are given in the
captions of Fig. 3.

4 Experiments

Here, we describe the dataset used to analyse the efficacy of omnidirectional video saliency estimation for
creative processes, the selected saliency estimation method, i.e., AVS360 [6], and the evaluation metrics used.

4.1 Dataset

In this paper, we use the Director’s Cut database [7] to analyse how viewers’ fixations relate to the estimated
omnidirectional video saliency. This database contains a number of cinematic VR films and includes details
from the creators as to where they intended to direct the attention of viewers. For this, creators provided
their preferred viewport area throughout the films, using the Tracker in the commercial compositing software
Nuke' from The Foundry. The centre of this viewport (i.e., “DC point”) is recorded as U and V coordinates,
horizontally and vertically. The actual viewing directions were then collected from 20 viewers as they watched
the films in a natural manner, by collecting the centre point of viewers’ viewports [23]. Further details on this
technical process can be read in [7]. Fig. 3 visualises the RGB frames, viewers’ fixations, and the estimated
saliency maps for three different frames. The first column shows the director’s intended viewport overlayed on
the RGB frame, the second column shows the director’s intended viewport overlayed on the estimated saliency
map, and the third column shows participants’ fixation points plotted over the saliency map.

For our analysis, we selected four of the films from the Director’s Cut database: “DB”, “Jaunt”, “Luther”,
and “Vaude”. These films had the greatest amount of details as provided by the films’ creators, and they also
had a range of different lighting and guiding devices used within them.

4.2 Saliency estimation method

To investigate the use of omnidirectional video saliency on VR films and creative processes, we selected the
AVS360 model [6] as one of the recent saliency models, the implementation of which is publicly available. This
model is composed of two 3D residual networks (ResNets) to encode visual and audio cues. The first one is
embedded with a spherical representation technique to extract 360° visual features, and the second one extracts
the features of audio using the log mel-spectrogram. While this can take spatial audio into account, the DC
database was created with videos using mono sound. The AVS360 model was used as is, without any retraining
on the DC database. Interested readers are referred to the original paper [6] for further training details.

4.3 Evaluation metrics

To evaluate how well the AVS360 model predicts the regions that attract visual attention, we use two saliency
evaluation metrics: area under curve (AUC) and normalized scanpath saliency (NSS). Both AUC and NSS are
location-based metrics, and they are computed using the ground truth fixation points and estimated saliency
map. To compute AUC, the evaluation task was reframed as classification task and the area under the receiver
operating characteristic (ROC) curve is computed by finding the true positive and false positive rates. NSS on
the other hand first normalises the saliency map (i.e., saliency map is shifted to a mean of zero with standard
deviation of one) and estimates the average of the normalised saliency. Additional detail on the metrics used can
be found in [24]. To compute these metrics, we used open source implementations for NSS? and AUC? [25].

1 https://www.foundry.com/products/nuke
2https ://sites.google.com/site/saliencyevaluation/evaluation-measures
3 http://www.saliencytoolbox.net/

September 2-3 , 2021, DCU 21 978-0-9934207-6-4



Proceedings of the 23rd Irish Machine Vision and Image Processing conference IMVIP 2021

1 1 1 1
[~ [~ =4 [~
205 Los 205 205
> >
0 0 0
2000 4000 6000 2000 4000 6000 8000 10000 2000 4000 6000 1000 2000 3000 4000
Frame # Frame # Frame # Frame #
(b) VPSR - “Jaunt” (c) VPSR - “Luther” (d) VPSR - “Vaude”
1 1 1
2 2 2
5 0.5 é 0.5 zv 0.5
> > >
0 0 0
2000 4000 6000 2000 4000 6000 8000 2000 4000 6000 1000 2000 3000
Frame # Frame # Frame # Frame #
(e) VPSR5q - “DB” (f) VPSR5q - “Jaunt” (g) VPSRsg - “Luther” (h) VPSRs5 - “Vaude”

Figure 4: Frame-wise evaluation of the relationship between saliency estimation and directors’ intention for
each video in terms of VPSR.

S Analysis and Discussion

5.1 Validating the use of AVS360

We first analyse how well AVS360 predicts the ground truth viewing directions. For this, the AUC and NSS
metrics are calculated, and the mean AUC and NSS metric results are reported in Table 1.

As we can see from Table 1, both AUC and NSS values support the hypothesis that the selected saliency
estimation method, AVS360, can predict the fixation locations well. The AUC score is defined in the range of
[0,1], and a high AUC score (e.g., 0.8594 as in Table 1) indicates that the estimated saliency map predicts the
distribution of the fixations well. The NSS score shows how large the saliency values correspond to the fixation
locations, and having NSS scores ~ 2.5691 means that the saliency values corresponding to fixation locations
are 2.50 away from the mean of the saliency map. That is, the estimated saliency map yields high values at
fixation locations. Both of these observations show that the AVS360 model can predict salient regions well.
Furthermore, AVS360 can identify locations that might divert visual attention.

5.2 Frame-wise VPSR results

The generic VPSR metric given in Eqn. 4 enables directors to fine-tune the VPSR results by modifying the p
value between [1,100]. To validate VPSR metric and to show how a change in p affects the results, in this sub-
section, we provide the frame-wise results for the proposed VPSR metric for two different cases: considering
the whole saliency map (p = 100) and considering the highest probabilities that sum up to 50% (p = 50).
Sample VPSR metric results were provided in the captions of Fig. 3 along with sample frames. These
sample results show that a VPSR value of 0.667 corresponds to a very good overlap between the DC viewport
and the estimated saliency while a VPSR value of 0.018 indicates poor correspondence. The values are more
intuitive for VPSR5 as it yields both higher and lower values for these examples. Fig. 4 shows the overall

Table 1: Mean AUC and NSS metric results across all frames comparing saliency maps and viewers’ viewing
directions.

Film ‘ “DB” ‘ “Jaunt” ‘ “Luther” ‘ “Vaude” ‘ Overall
AUCviewers | 0.8940 | 0.9264 | 0.9346 | 0.8594 | 0.9036
NSSvViewers | 17367 | 27249 | 27531 | 25691 | 2.4459
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results and allows analysis of how well saliency prediction and directors’ intent agree. We can identify dips,
which indicate areas that may require intervention to keep viewers’ attention. Overall, the VPSR metric was
higher for “Luther” compared to other contents. The graphs for VPSR and VPSR5g show similar characteristics,
while VPSR5( has larger swings; therefore, it might provide more intuitive results for the director.

6 Conclusion

In this paper, we proposed a metric that allows directors to optimise their cinematic VR content for viewer
guidance. To demonstrate how this metric is capable of yielding useful scores for directors, we used the
AVS360 saliency estimation method on an omnidirectional video dataset. We first validated that AVS360
predicts viewers’ attention well, and then we presented frame-wise VPSR results. The visual results along with
the frame-wise results show that the VPSR metric is indicative of how well the intended viewports could retain
viewers’ attention.

The results indicate that the AVS360 model and the VPSR metric could form part of a plug-in that will
notify the director of regions of possible distractions within the film. The directors will be presented with
frame-wise VPSR results as shown in Fig. 4 and they can identify the dips in VPSR values (e.g., dips in visual
attention) without checking the saliency estimation results for all the frames manually. With this information
the director could then alter the film set during the production or use visual effects (VFX) in post-production
accordingly. The VFX option could even be done in an adaptable manner should the viewers’ attention stray.
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Abstract

Deep learning techniques are used to achieve state-of-art accuracy in semantic segmentation on
aerial ortho-imagery datasets. These algorithms are known to be efficient in terms of accuracy but at the
expense of computational power required for training and subsequent inference operations. In this paper
we strive to achieve a comparable performance but with lower floating point operations per second
(FLOPS) and less training time. With this in mind, we chose to evaluate the EfficientNet-BO network
configured with 5.3 millions parameters and 0.39 billion FLOPS as a feature extractor operating inside a
U-net architecture, achieving accuracy levels (mean F1 score of 0.869) comparable to a state-of-the-art
deep learning architecture (U-net with Resnet50 as backbone) configured with 25.6 million parameters
and 4.1 billion FLOPS which achieved a mean F1 score of 0.87. These promising results demonstrate that
employing EfficientNet as the feature extractor in semantic segmentation on aerial ortho-imagery can be
an effective strategy, in achieving higher performance results in terms of computational power, especially
when running these networks on the edge.

Keywords: Deep Learning, Supervised Image Segmentation, semantic segmentation, ortho-imagery, Deep
convolutional neural network

1 Introduction

Over the past decade, advances in Machine Learning (ML) and in particular Deep Learning (DL) algorithms have
resulted in significant advances in Computer Vision. One of the key applications is Semantic Segmentation which
is used in a number of applications including; Robotic Localisation, Autonomous Driving, Scene Understanding
and, building High-Definition Maps [Kemker et al., 2018].

In terms of geospatial applications, unmanned aerial vehicles (UAVs) are playing an increasing role in data
gathering and mapping our real world environments. These robotic aerial data gathering platforms are now
commonly found across the globe, collecting large volumes of data that require automated processing such as
feature extraction to be carried out on the fly. Such requirement demands both computationally inexpensive and
high accuracy feature extraction techniques [Ammour et al., 2017].

Most common and well-known traditional techniques in computer vision like Support Vector Machines,
[Waske and Benediktsson, 2007], and Random Forests, [Pal, 2005], often result in less accurate outputs compared
to the DL techniques that produce significantly improved accuracy but at the expense of resources required to
train and carry out subsequent inference [O’Mahony et al., 2020]. In this paper we investigate the potential for
EfficientNet family, [Tan and Le, 2019], to help reduce this expense in extracting man-made features in UAV
aerial imagery. We investigate this hypothesis using an U-Net architecture, [Ronneberger et al., 2015], with an
EfficientNet-B0, [Tan and Le, 2019] feature extractor. To assess the performance of the resulting architecture we
utilise the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark dataset [ISPRS,
2016].

2 Prior Work

Recent developments in aerial robotic data gathering platforms, such as UAVs, now enable the rapid capture of
aerial imagery at higher spatial-temporal resolutions as well as lower costs. In parallel, emerging developments in
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contemporary DL algorithms in automating the data processing and feature extraction has resulted in new data
products and information services for applications including; urban planning, land cover classification,
Emergency Response, etc. [Ammour et al. 2017].

It is possible to generate an orthophoto from overlapping aerial imagery that is geometrically corrected
(orthorectified) so it can be used to measure true distances and dimensions. The process of orthorectification
enables various real-world phenomena and distortion such as topographic relief, lens distortion and camera
orientation to be corrected [Habib et al., 2007].

Semantic Segmentation is an important algorithm that can assign a class to each pixel of a given image
where the classes are defined 4 Priori. Semantic Segmentation applied to ortho-imagery is very useful and
important because of its ability to detect and categorise one or more classes in the ortho-image [Liu et al., 2018].
Traditional image segmentation methods include; Watershed, Graph Cuts and Random Forests which have been
used to classify high-resolution aerial images [Meyer and Beucher, 1990; Boykov and Jolly, 2001; and Pal, 2005].
However, DL techniques involving convolutional neural networks have proven to be more efficient and effective
in extracting features from images compared to these more traditional approaches [Deng et al., 2009]. DL methods
perform well even for semantic segmentation due to their ability to automatically extract features. For example, in
2015, there was a 20% relative improvement to 62.2% mean Intersection over Union (IoU) using a Fully
Convolution Networks (FCNs based on the PASCAL VOC 2012 benchmark dataset compared to the state-of—the-
art techniques of that time [Long et al., 2015].

There are many Neural Network architectures that utilise CNNs for semantic segmentation tasks e.g., U-net
[Ronneberger et al., 2015], LinkNet [Chaurasia and Culurciello, 2017], Feature Pyramid Networks [Li et al.,
2019]. As an example, [Wu et al., 2018] uses U-net [Ronneberger et al., 2015] for automatically segmenting
building features from aerial imagery. Similarly, [Boonpook, et al., 2018] uses SegNet [Vijay et al., 2016] to
extract building features from UAV images for riverbank monitoring. One of the novelties of these architectures is
their compatibility and adaptability with a range of feature extractors. For example, one can use VGG [Simonyan
and Zisserman, 2015] as the feature extractor in a U-net architecture [Ronneberger et al., 2015] or use ResNet [He
et al., 2016] inside a LinkNet [Chaurasia and Culurciello, 2017]. The performance of these networks completely
depends on the performance of the feature extractor in combination with how the architecture combines these
features to segment the objects under observation. More recently, ScasNet [Liu et al., 2018] which utilized Resnet
[He et al., 2016] as a feature extractor, achieved one of the best results with an overall accuracy of 91.1% on the
ISPRS Potsdam benchmark dataset [Liu et al., 2018]. With a more complex feature extractor is it possible to
achieve higher performance with respect to accuracy in resulting object segmentation, but this also increases the
number of parameters to train. This gives rise to computationally more expensive requirements since high-
performing DL techniques require relatively large volumes of training data to train models with a high number of
parameters.

In this paper, we investigate the potential for a more efficient and scalable Semantic Segmentation Neural
Network architecture that allows a comparable level of performance to be achieved similar to the actual state-of-
art applied to ortho-imagery from the ISPRS Potsdam benchmark dataset. To this end, we employ a combination
of a U-net architecture [Ronneberger et al., 2015], an EfficientNet [Tan and Le, 2019] feature extractor and
focal/dice loss [Lin et al., 2020, Deng et al., 2018].

3 Technical Description

The main drawback of the majority of CNNs are their tendency to down-scale or reduce the spatial resolution of
the features along the depth of the network which is not ideal in a segmentation context.

To overcome down-sampling of the spatial resolution, many Fully Convolutional Neural Networks have
been suggested like Segnet [Vijay et al., 2016], U-net [Ronneberger et al., 2015]. We chose a U-net architecture
with an EfficientNet-b0 as the feature extractor, after an initial assessment based on literature review, for this
study.

The U-Net architecture is a CNN widely used for Semantic Segmentation. The original network consists of
an encoder path and a decoder path that gives the U-shaped architecture. The Encoder part is composed by
repeated convolution layers, each followed by a rectified linear unit (ReLU) layer and a maximum pooling layer.
The decoder part is composed by sequence of up-convolutions and concatenations.
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Figure 1: Overall U-net architecture using EfficientNet-b0

The U-net architecture readapted with the EfficientNet-BO as the encoder is detailed in Figure 1. The
EfficientNet is a family of Convolutional Neural Networks developed in the context of AutoML where the authors
have investigated a possible solution for neural network (NN) scaling for efficiency [Tan and Le, 2019]. Tan and
Le, [Tan and Le, 2019], created a first baseline EfficientNet-B0 inspired by a MnasNet and scaled up to the B7
network using their new compound scaling method, optimizing both accuracy and FLOPS at the same time. As a
result, the network is faster and smaller compared to the other major networks used based on the ImageNet
benchmark dataset [Tan and Le, 2019]. Specifically, EfficentNet-B0O uses 4.9 times less parameters and 11 times
less FLOPS compared to ResNet-50 while providing 77.1 % as Top-1 accuracy on ImageNet compared to 76.1%
of ResNet-50 [He et al., 2016]. Figure 2 shows the EfficientNet-B0 architecture.
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Figure 2: Architecture of EfficientNet-B0 as feature extractor
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Along with the architecture, it also important to carefully select the loss function which will penalize the
network for incorrect predictions and detections. Standard cross-entropy loss is calculated as the average of per-
pixel loss. This poses a huge issue when the number of foreground pixels are far less than the number of
background pixels. Although, weighted cross entropy loss helps alleviate this problem, it does not result in a
significant improvement. To overcome this issue, we used a combination of a focal and dice loss. While the focal
loss helps in learning hard negative examples and addresses the issue of class imbalance, dice loss helps to learn
better class boundaries [Lin et al., 2020, Deng et al., 2018].
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The Dice Loss is defined by

OEIDWRICTIO
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(1)

where C is the total number of classes, N is the total number of pixels, p;(c) is the predicted class of the pixel,
gi(c) is the ground truth class of the pixel. TP, FP and FN are respectively the true positives, false positives, false
negatives of a particular class. The Focal Loss is defined by

Lrocat = =23 T3 21 91(€) (1 = pi(e)) Llog (ps(c)) @)

The focusing parameter y was set to 2 and the weighting factor A was set to 0.25 in our experiment. Thus, the total
loss is given by,

Lpr = Lpice + Lrocal

2TP(c)
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4 Experiments

4.1 Implementation

We implemented U-net architecture using Tensorflow 2.3.1 with CUDA 10.1 support. Training images are read
on the fly and randomly augmented using Tensorflow data API. We did our performance tests using a graphics
processing unit (GPU) NVIDIA GeForce GTX 1650 with 4 GB of GPU memory.

4.2 Benchmark Dataset

We applied and studied the performance of the architecture described in section 3 with the ISPRS Potsdam
benchmark dataset [ISPRS, 2016]. This benchmark dataset contains 38 ortho-images of same size of 6000 x 6000
pixels generated from cropping a larger orthophoto at a ground sampling distance (GSD) of 5 cm. Each ortho-
image in the dataset consist of 4 channels IRRGB (Infrared, Red, Green, Blue) and for each ortho-image, there is a
corresponding Digital Surface Model (DSM), representing elevation and normalised DSM (nDSM) data. The
ground truth labels are also provided for training purposes for 24 of these 38 ortho-images. An example of the
dataset is detailed in Figure 3 where a ISPRS RGB patch is overlapped with the ground truth. The ground truth
colour map used for ISPRS classes/objects is listed in Table 1.
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Figure 3: Labels overlapped on a RGB ortho-image crop from ISPRS Potsdam dataset

Colour Class
White Impervious Surfaces
Blue Buildings
Cyan Low Vegetation
Green Trees
Yellow Car
Red Clutter

Table 1: ISPRS colour and class definition

4.3 Training and Evaluation

For the experiments, we pre-processed the raw ISPRS Potsdam dataset and generated 4681 patches of 512x512
pixels each with the infrared (IR), red (R), green (G), and normalized digital surface model (nDSM) band. Every
patch has the correlated mask in a different folder with the same patch name in .tif format. For training, we used
an 80/20 split so, 80% of all the 4681 patches was used for train the model and the remaining 20% patches was
used for validation purposes. Data was also normalized, and data augmentation was applied, which consisted of
random rotation of 90°, vertical and horizontal flips with a probability of 0.5. We choose a batch size of 4 due to
our memory constraints. We did not use the Transfer Learning technique because most of the common pre-trained
weights are based on RGB images, but in this case, we have 4 channels corresponding to IR, RG and nDSM data.
Hence, we initialized the network with Xavier initialization [Glorot and Bengio, 2010]. The initial learning rate
(LR) was set to 0.001 with a learning rate scheduler that monitored the validation loss. The LR was set to decrease
by a factor of 0.1 every 5 epochs if the validation loss doesn’t reduce. The minimum LR was set to le-15. The
optimizer chosen was Adam [Kingma and Ba, 2015].

We trained two models using the ISPRS Potsdam dataset and created a comparison table (Table 2) with the
F1 score metric (2) per class and reporting the number of parameters and FLOPS required. All the models are
based on the same U-net architecture but with a different feature extractor. We chose to compare EfficientNet BO
with ResNet50 because these two architectures have comparable performances [Tan and Le, 2019]

We assessed quantitative performance of the two models based on the F1 score applied to all the six classes
as,

Fl=2 Precision*Recall (4)

Precision+Recall

where, Precision and Recall are defined by:

. . TruePositives
Precision = — — (5)
TruePositives+FalsePositives

Recall = TruePositives o

TruePositives+FalseNegatives
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4.4 Results and Analysis

We generated predictions for each of the fourteen ortho-images contained in the ISPRS Potsdam test dataset and
compared to the ground truth calculating the metrics for both architectures. We also produced qualitative results as
shown in Figure 4 where we show the IRRG image, the ground truth, the prediction with Resnet50 and the
prediction with EfficientNet-BO based on an ortho-image from the ISPRS Potsdam test dataset.

As seen from Table 2, EffientNet-b0 resulted in almost the same weighted F1 score as ResNet-50 but with

4.9x less parameters and 11x less FLOPS. This resulted in comparable performance when comparing

EfficientNet-b0 to ResNet-50 but with significantly less computational overhead.

F1-Scores
. Num. of Weighted .
Architecture parameters FLOPS | rean 1 | Impervious Buildings Low Trees | Car | Clutter
Surfaces Vegetation
U-net +
EfficientNet 5.3M 0.39B | 0.869 0.89 0.95 0.82 0.83 | 0.89 0.41
-BO
U-net +
ResNet50 25.6M 4.1B 0.87 0.89 0.95 0.82 0.82 | 0.88 0.45
Table 2: Model comparison
—a Grouse Troth Restiet. 50 ETV st et 150

’ " . -
Figure 4: Qualitative comparison side by side of the inference from the models on the ISPRS Potsdam test set.
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5 Conclusions

In this paper, we investigated a more efficient Neural Network architecture that can achieve state-of-art
performance on Semantic Segmentation applied to ortho-imagery, captured using UAVs. We reviewed a Neural
Network based on a U-net architecture but modifying the features extractor with the new EfficientNet-B0. We
were not interested in accuracy alone, but also examining the possibility of reducing the computational power
required by the common architecture ResNet50. Initial results are promising and scalable. Further experimentation
could be conducted on testing and evaluating the robustness and versatility of these architectures using different
datasets and comparing the results also with other well-known Semantic Segmentation architectures.
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Abstract

The Ki-67 protein is associated with cell proliferation and is a clinical marker for breast cancer tumour
aggressiveness. The percentage of immunopositive cells present in a histological image stained for Ki-67
expression informs the proliferation index quantifying tumour aggressiveness. This calculation is frequently
carried out through manual assessment that is time consuming and susceptible to human error. Automated
image analysis tools for Ki-67 breast cancer images may have a significant impact if they could be in-
tegrated in to clinical and digital pathology workflows by reducing workload for pathologists, as well as
improving efficiency and accuracy. This work presents the development of a deep learning based model for
automated calculation of Ki-67 proliferation scores from stained histological images. The resulting compu-
tational model predicts cell types (immunopositive vs immunonegative) with 96% accuracy, the Ki-67 index
category with 88% accuracy and the Ki-67 index with lower RMSE than the state of the art models. The
predicted mask from the model provides a transparent explanation of the computational decision making.
Moreover, the computational model is hosted on a cloud platform and can be utilised through a mobile ap-
plication designed for this investigation. The proof-of-concept mobile application has the potential to make
an impact in many communities, especially in low and middle income countries where there are currently
insufficient resources, namely a lack of expensive digital scanners, to support digital pathology in the fields
of medicine and education.

Keywords: Deep learning, image segmentation, Ki-67 proliferation score, mobile technology, cloud computing

1 Introduction

In recent years, the Ki-67 protein has been investigated as a clinical marker for breast cancer tumour aggres-
siveness [ Yerushalmi et al., 2010, Inwald et al., 2013]. The biomarker is a nuclear protein associated with cell
proliferation; the increase in the number of cells as a result of cell growth and division. Pathologists use scor-
ing systems to estimate a proliferation index; low (<10%), borderline (10-20%), and high (>20%). A higher
proliferation index indicates that more cells are undergoing cell division, which can signify a more aggressive
tumour.

Currently, there are several challenges incorporating automated Ki-67 proliferation index measurements in
to clinical and digital pathology workflows without using a digital scanner. Measuring the proliferation index
manually is time consuming and sensitive to variance. This variance could be due to differences in staining
protocols, digitisation equipment, staining compounds or slide preparation, which can create variabilities in

*richard.gault@qub.ac.uk
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image quality and colour across datasets. The cell nuclei are also subject to variance in terms of structure,
shape, colour and intensity [Joseph et al., 2019]. Diagnostics from histopathology images usually rely on a
visual assessment of the cell slides by a pathologist, which can imply an inherent element of interpretation with
consequent subjectivity and possible human error. This manual process can be time-consuming and susceptible
to human error, there is a motivation to introduce computational methods to encode the expertise of the decision
making process.

Logistically, scanners required for digitising slides are expensive and don’t offer portability. Advances
in mobile phone camera technology have shown the capability to take satisfactory resolution images of mi-
croscopy cell slides. [Herndndez-Neuta et al., 2019] acknowledge that the image sensors within a smartphone’s
camera module are sensitive enough for many diagnostically relevant applications. There is the potential for
the adaptation of smartphones as imaging read-out platforms that could be used for on-site image acquisition,
real-time analysis, management of the generated results at the user’s convenience, and data transfer from the
site of detection to other healthcare professionals.

This highlights an opportunity for digital pathology tools (and digital analysis) to be shared with the world
through mobile devices, thanks to the portability and technological features they offer. Not only would this
have a positive impact in the practice of pathology, but it would particularly benefit communities in low and
middle income countries, where the current option of using an expensive scanner is not feasible. Furthermore,
connecting global experts through a common platform that facilitates ease of communication and knowledge
transfer would support the digital pathology community as a whole but specifically those working in low and
middle income countries.

This paper presents a novel investigation in to the automated Ki-67 proliferation scoring of histological
images. This work also presents the development of a prototype mobile application that would enable multi-
ple users to interact on a single platform and analyse images stored on or captured by the device. Section 2
will outline the current research in the area of automated Ki-67 proliferation scoring. Section 3 will outline
the proposed methodology and computational system along with the experimental protocols used to evalu-
ate the computational model. Section 4 provides an overview of the results before the findings of this work
are discussed in Section 5 in the context of existing work. The conclusion (Section 6) summarises the main
contributions of this work and highlights future opportunities for research.

2 Background

The advances and success of deep learning methodologies in the area of image processing combined with the
quantity and quality of image data in the digital pathology domain has led to a surge in the development of deep
learning solutions to support digital pathology analysis. In particular in the area of Ki-67 proliferation scoring,
a number of approaches have been considered.

Proliferation Tumour Marker Network (PTM-NET) [Joseph et al., 2019] is a four layer convolutional neu-
ral network (CNN) that performs instance segmentation on cells before identifying Ki-67 immunopositivity
in supplementary analysis. PTM-NET predicts immunopositive and immunonegative cells with an accuracy
of 70% and 88% respectively. The performance of the algorithm in calculating the proliferation index is not
presented but the work shows how a relatively simple CNN can be used to provide reasonable accuracy in identi-
fying Ki-67 expression. A more complex solution using a similar aproach is PathoNet [Negahbani et al., 2021]
which utilises U-Net [Ronneberger et al., 2015] as the foundation for its modelling framework with the first
layer and convolutional layers replaced by a residual dilated inception module that reduces model complexity.
The model predicts Ki-67 immunopositive and immunonegative cells with 85% and 75% accuracy respectively.
Ki-67 proliferation index scoring was achieved with an root-mean-squared error (RMSE) of 0.62 which was in
keeping with alternate benchmark models. Cell segmentation in the predicted masks is carried out using the
Watershed algorithm [Atta-Fosu et al., 2016]. The findings highlight the potential for U-net to form the basis
of modelling efforts in this area, although the variance in the staining and imaging of the samples may result in
the cell segmentation algorithm performing to a lower standard than desired.
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Instead of taking an instance segmentation approach to cell detection, [Geread et al., 2019] proposed a novel
unsupervised colour separation model before distinguishing cells through post processing and nuclei detection
algorithms. The model achieved a classification accuracy of 92.5%. This unsupervised approach avoids human
error in the subjective labelling and ground truth annotation of slides. However, it is difficult to say how well
the colour separation model would generalise across laboratories where staining protocols can lead to very
different colour profiles in images. It is desirable in the current study to prioritise generalisability over absolute
performance on a given dataset due to the aims to support digital pathology analysis in low and middle income
countries that would be spread across different laboratories.

3 Methodology and experimentation

This section will first outline in Section 3.1 the development of the computational model for detecting Ki-67
expression and the dataset used in this endeavour. The mobile application that was simultaneously developed
to house the computational analysis is outlined in Section 3.2.

3.1 Computational modelling
3.1.1 Data

Annotated cell slides of microscopic biopsy images of
malignant breast tumours containing Ki-67 protein ex- (a)
pression were obtained from [Negahbani et al., 2021].

Each raw image is downsized from a starting dimension 'y -
of 1228x 1228 to a final dimension of 256x256. Seg- g °
mentation masks for each image are generated using the A e .°
OpenCV-Python library. An example of the raw images ¥ _\ ]

and its corresponding mask are illustrated in Figure 1. et . '
The staining protocol results in cells that express the Figure 1: (a) shows an example raw image and (b)
Ki-67 protein appearing as a dark brown colour (Figure shows the resultant ground truth mask generated from
1 (a)). Adaptive Gaussian thresholding is first applied the JSON annotation.

to the images to separate cells from the background and

create a binary image with background pixels in black and cell pixels in grey. This image is then used to draw
contours around each cell. Ground-truth annotations are contained in a corresponding JSON file comprised of
co-ordinates for the annotated nuclei, as well as their classification (Ki-67 immunopositive or immunonega-
tive). The centre position of each contour is compared with the JSON file to locate all the cells identified as
being immunopositive. Any matches have their pixels changed from grey to white (Figure 1 (b)). This forms
the ground truth masks for training of the deep learning model.

3.1.2 Experimental overview and model outline

The instance segmentation in this study is achieved through the application of transferred learning on the U-Net
model [Ronneberger et al., 2015], with a pretrained ResNet encoder (specifically ResNet50 [He et al., 2016])
and ImageNet [Deng et al., 2009] weights developed in PyTorch (version 1.8.1). The optimiser is Adam
[Kingma and Ba, 2014] and the learning rate is set to 0.001. All weights are considered trainable. The model
is trained for 10 epochs. Preliminary analysis found that the model plateaued at sufficient accuracy around 9
epochs. The train, validation and test split of data is 70%-15%-15% respectively. To perform model evaluation
through a variety of metrics, the mask is decoded to establish the number of Ki-67 immunopositive and im-
munonegative cells. This is carried out in a reverse process to the JSON-to-mask encoding used in the ground-
truth annotations (Section 3.1.1). Gaussian thresholding is applied to the mask and contours are extracted before
the label for each cell is documented for use in the evaluation process. A copy of the model implementation can
be found: https://github.com/richardgault/Automated-Ki-67-proliferation-scoring.
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3.2 Mobile application and cloud hosting

To support end-user access a mobile application has -
been implemented which is available on both An- i PR ™ P L 5| | Damese |, '
droid and iOS platforms. The application communi- Aep § patabase
cates to services, such as the machine learning plat-  User \ |

form which performs the analysis, through HTTP re- I M icrosendce. "

quests made over the Internet. The services them- :

selves including the machine learning elements and authentcation | Cloud Hosting Senvice (Kubernetes)
database storage are packaged as microservice con- ervee
tainers using the industry standard Docker which al-
lows them to be easily run on any cloud hosting provider. For the purposes of our implementation they are
deployed using a kubernetes hosting cluster. The services provide an Application Programming Interface (API)
to which the application can connect and make requests to process, store, or retrieve data. The generalised
architecture is shown in Figure 2. Such an approach allows easy remote access from any device with a net-
work connection including cellular data and also offers the potential for other implementations beyond our
application to make direct remote use of the hosted services, i.e. a third party could integrate our cloud based
processing in to another platform for gathering images.

4 Results

Figure 2: Illustration of the software architecture

4.1 Evaluation of model performance

Original Image Ground Truth Mask Predicted Mask Predicted Ki67 Heatmap
k. -
. “A
h W e
-8
¢ .
-
‘ N\ ‘ .
I ’ A

Figure 3: Example of the predicted mask and heat map relative to the raw image and ground truth mask.

Figure 3 shows an illustration of the predicted mask and heatmap produced by the model relative to
the original image and its ground truth mask. Table 1 provides an overview of the training, validation and
test performances of the model. The

) ) ) Table 1: Evaluation of Model performance
performance is consistently high and

comparable across all datasets and Dataset | Accuracy Precision Recall fl-score  IoU

measures. It is notable that the Train 0.9575 0.9371  0.9353 0.9362 0.8813
predicted mask generally estimates Validation | 0.9584 0.9385 0.9367 0.9376 0.8901
cells that were completely solid as Test 0.9609 0.9421 09403 0.9412 0.8961

desired whereas the ground truth
mask sometimes included "background" (i.e. black) pixels in the middle of some of the immunonegative
cells (shown in grey in the masks of Figure 3). This is likely an artifact introduced by the mask generation
approach that was outlined in Section 3.1.1 when the light coloured portions of cells have been mislabelled as
background following the adaptive Gaussian thresholding process. These mismatches between the ground truth
and predicted masks result in reduced Intersection over Union (IoU) scores for these isolated regions despite
the prediction being meaningful and appropriate. This is important to remember when considering the IoU
score.
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Table 2: Comparison of model performance

The Ki-67 index score is calculated as the num-
ber of immunopositive cells relative to the total
number of cells in the sample. Previous studies
[Negahbani et al., 2021] compared the performance

Model RMSE
Mod. DeepLabv3-Mobilenetv2 | 0.050
Mod.DeepLabv3-Xception 0.063

of existing models in their ability to accurately cal- Mod. FCRN-A 0.067
. Mod. FCRN-B 0.069

culate the Ki-67 index of a sample. These figures are
resented in Table 2 alongside the model presented in PathoNet 0.062
p & P Proposed model 0.045

this work. The results show that the proposed mod-
elling approach has performed slightly better than the existing models. However, strong conclusions should not
be drawn from this table as the test set used in the current analysis is likely to be different than that used in
[Negahbani et al., 2021] despite using the same data; also, previous models were trained on 3-class classifica-
tion (immunopositive vs immunonegative vs lymphocyte) which extends the binary classification considered in
this work.

For diagnostic purposes and to inform prognosis, the Ki-67 index is categorised in to low (<10%), borderline
(10-20%) and high (>20%). The model was able to predict the correct category with 88% accuracy. Table 3
shows the confusion matrix for the category prediction and Table 4 provides the associated metrics for the
model’s performance. It is clear from Tables 3 and 4 that the model performs particularly well in the extreme
cases of low and high Ki-67 expression. The accuracy of the category prediction is lower than the accuracy
of the individual cell prediction because misclassification of an individual cell has relatively little impact given
the high number of cells the model considers. Each image contains multiple cell types and typically a large
number of cells. Therefore the impact of misclassifying an image in to the correct category has a greater impact
on the results since the total number of images is vastly less than the total number of cells, which the metrics in
Table 1 consider. The results show that the model can accurately identify cells, classify the presence of Ki-67
expression and accurately categorise the Ki-67 index in to an appropriate category for diagnosis and prognosis.

Table 3: Confusion matrix for Ki-67 category Table 4: Ki-67 Index metrics per category
Predicted
<10% 10-20% >20% Category | precision recall fl-score
<10% 270 25 2 <10% 0.968 0.909  0.937
Actual  10-20% 9 54 6 10-20% 0.651 0.783  0.711
>20% 0 4 25 >20% 0.758 0.862  0.806

4.2 Evaluation of the Mobile Application

The mobile application is a multi-user system authentication to ensure access control. The user interface is
designed with a consistent dark mode colour scheme to improve visual ergonomics by reducing user eye strain,
adjusting brightness according to lighting conditions and facilitating screen use in dark environments — all while
conserving battery power by reducing the use of light pixels. Intuitive and minimal functionality is presented
to the user to support ease of use.

A new image can be taken using the mobile device camera or an existing one can be selected from storage
(Figure 4 (a)). Multiple images can be selected at one time to enable batch analysis. The image is then displayed
on the user interface (Figure 4 (b)) and the button to analyse the image is enabled. Once pressed, all images to be
analysed are sent as an image stream in an HTTP POST multi-part form request to the machine learning micro-
service for analysis. The JSON response is returned to the mobile application, where it is then deserialized to
obtain values such as the number of immunonegative cells, number of immunopositive cells and consequently
the Ki-67 proliferation index as a percentage. The results are returned to the user nearly instantaneously when
there is strong internet connectivity. Asynchronous communication handling of the mobile application means
that normal operation of the mobile application is undisturbed if there is an unforeseen delay in the returning
of results.

A predicted mask is also returned with the model predictions providing a visual result for transparency and
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Image ID: 0 Image 1D: 9

Image Group ID: O Image Group ID: 9

Default result name, Result_ImagelD Default result name, F?r-ml',lm:-qm{:i
Running pathologist ID: 1

Expert opinion Expert opinion
Second opinion pathologist: 0

Select user ID for second opinion Select user ID for second opinion

]

Home

Figure 4: Screen shots of the mobile’s analyse image functionality: (a) Images imported by taking a new image
with the device’s camera or from file (individually or as a batch). Images can be processed by selecting “RUN".
(b) Batches of images can be previewed and removed from the user’s selection as desired. (c) If the user wishes
to first provide a blind review of the results they can toggle the result viewer to hide or show the modelling
results. (d) Predicted masks are displayed along with (e) key information regarding the Ki-67 proliferation
index. (f) The results can now be saved (function now enabled) for future records. Optionally, the image(s) can
be reviewed by the current user and/or assigned to another user for a second opinion.

traceability of the model’s decision making for the pathologist to examine as well as the Ki-67 statistics (Figure
4 (d) and (e) respectively). The application has been designed to facilitate both single and batch image analysis.
Results can be saved to the database (Figure 4 (f)). The user running the analysis can assign the result to another
user in their favourite contacts list (determined by the user), so that they can get a second opinion.

The mobile application is evaluated through automated testing. The NUnit framework (Version 3.12.0) is
used for the view-model unit tests. Tests have been written using the Arrange, Act, Assert (AAA) pattern,
which involves initialising objects and setting data values, invoking the method under test with the arranged
parameters and verifying that it behaves as expected. Unit tests for the mobile application view models had 71%
coverage using Rider IDE from JetBrains with all tests passing. Moq (Version 4.16.10) is used as a mocking
framework to emulate responses from interfaces, which is done during the Arrange part of the tests. Some of
the classes used in the code implementation do not inherit interfaces and therefore cannot be mocked. This
meant that some of the code was not testable, but the code coverage shows that a majority of the logic of the
mobile application code for the view models was still able to be tested. The fact that all tests passed verifies that
the logic of the code functions successfully and as expected. Integration tests for checking the connection to
each request handler were implemented and all successfully passed. A YAML file is used to configure GitLab
Continuous Integration/Continuous Deployment. It allows the database microservice to be built and tested
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automatically each time a code change is pushed to the codebase. This verified that the microservice could
receive HTTP requests.

5 Discussion

The developed computational model for automated Ki-67 proliferation scoring is designed to improve analysis
workflows in digital pathology by providing a proof-of-concept solution that can be developed further. The
model is embedded in a computational system that allows users to intuitively and quickly run Ki-67 analysis
through a mobile application. The cloud based computation enables scalability and utilisation of computational
resources that would not be available locally on the mobile device.

The computational model has been able to correctly classify 96% of cells with very strong coincidence with
the ground-truth as captured by the IoU score of 0.89. The quality of the predicted masks provides pathologists
with confidence, transparency and traceability in the computational decision making process. Future work is
needed to extend the model’s exposure to more datasets collected from different international laboratories and
exposure to other tumour types than the breast cancer samples considered in the present work.

The mobile application has the potential to make an impact in many communities, especially low and
middle income countries where there are currently insufficient resources, namely expensive digital scanners, to
support digital pathology in the fields of medicine and education. Microscope mounts for mobile devices are
available that allow the device’s camera to be positioned at the lens of the microscope. This enables the user to
capture and analyse the field of view through the application. In terms of supporting low and middle income
countries, the multi-user mobile application provides the baseline infrastructure for further development that
make it feasible to connect global experts if they are using the platform. The authentication system implemented
means that existing email and authentication methods are retained and the application can be easily scaled
to a large audience. The second reviewer functionality implemented in the app provides the framework to
connect pathologists and researchers with global experts in their designated area for further opinions. The
cloud hosted analysis module also supports scalability and easy redeployment. There is also the potential
for the system to address challenges of educating medical students in digital pathology that were highlighted
in [Fontelo et al., 2012]. For example, the computational model could be used to test a student’s annotating
skills by comparing the model’s predicted mask against the student’s annotations and use the model’s mask as
feedback for the student in both a qualitative and quantitative way.

Future work for this system entails the refinement of the mobile application to enable enriched user features,
such as institutional/company specific areas, and complete automated and user testing. Although the results of
the Ki-67 prediction area high in all areas and the IoU of the predicted masks is also high, the computational
model needs to be evaluated on independent datasets from other sources. Staining and imaging protocols vary
around the world leading to diverse colour profiles and image quality. Consequently, further refinement will
likely be needed to ensure the model is robust before the model is used in real-world applications.

6 Conclusion

The proof of concept mobile application presented in this work provides accurate identification of Ki-67 im-
munopositive and immunonegative cells in histopathology images. The model can accurately support a pathol-
ogist or researcher in the scoring of Ki-67 proliferation as evidenced through the high performance in individual
cell classification, IoU score and KI-67 index categorisation. The computational system efficiently produces
information that is transparent and essential in many standard digital pathology analysis pipelines. Extensions
of this work could provide sufficient impact in low and middle income countries where state-of-the-art scan-
ning and computational analysis resources are not widely available. This cloud based system paves the way for
scalable and global solutions that could connect analysts with leading experts using the platform. Future work
is planned to enhance the functionality of the mobile system and refine the computational modelling to enable
its generalisation and robustness to variation across centres.
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Abstract

Stroke is the second largest cause of death and disability-adjusted life-years in the world. Minimising
the time to treatment for patients is extremely important. Facial weakness is a core symptom that medical
professionals consider when identifying cases of stroke. This is a subjective assessment of asymmetry in
the face. Due to this subjectivity, it is challenging to articulate the decision making process of a neurologist.
This work presents novel computational approaches to accurately model the detection of pathological facial
weakness from images of people with and without pathological facial weakness. Instance segmentation
is first used to isolate key facial features that inform the decision making of a fuzzy inference system.
This proof of concept study shows the feasibility of automated feature extraction and the effectiveness of
fuzzy inference systems in identifying facial weakness. Furthermore, the transparent nature of the instance
segmentation model and the fuzzy rule base has enabled the model to be compared against the real-world
decision-making process of a neurologist. The findings motivate future investigations to develop fuzzy
inference systems to detect other common deficits of stroke including limb weakness and drift as well as
dysarthria.

Keywords: Stroke, facial weakness, instance segmentation, fuzzy inference

1 Introduction

In the most recent Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), stroke was the 2" largest
cause of death globally and contributed to the 2" highest disability-adjusted life-years (DALYs) worldwide
[Johnson et al., 2019]. Although the age-standardised rate of deaths from stroke have declined since 1990,
treatment and post-stroke care is a significant economic burden with the treatment cost for severe stroke being
more that double that required for a mild stroke [Roger et al., 2011]. It is anticipated to have an even greater
global impact with the ageing population [Katan and Luft, 2018]. Ideally, the number and severity of cases
would be managed by preventative measures however the high burden of stroke globally suggests that such
strategies are not widely used or are ineffective. Consequently, there is a need to optimize the treatment of
acute stroke in order to reduce disability and cost.

Stroke therapy can be highly effective if administered early. Reducing the time to treatment by as little as
fifteen minutes can save one month of disability-free life [Meretoja et al., 2014]. This time-sensitive nature of
treatment efficacy is perhaps best expressed in the neurologists’ adage “time is brain”. Unfortunately, 1/3 of
patients have a significant delay in treatment [Kamal et al., 2017]. A major contributing factor to this delay is
the failure of patients, first-responders, and paramedics to recognize signs of stroke [Lachkhem et al., 2018].
Stroke signs are patterns of neurological function used by both medical professionals and the general pub-
lic to identify stroke. Some signs can be easily identified by most people while other signs are difficult to

*yporter03 @qub.ac.uk
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detect without extensive training [Brandler et al., 2014]. The three features most commonly used to identify
stroke in the field are unilateral or one-sided facial weakness, unilateral arm weakness, and slurred speech
[Hurwitz et al., 2005]. Brandler et al. [2014] found that with simple instructions untrained individuals rec-
ognized over 95% of cases of arm weakness and slurred speech. In contrast, only 74% of facial weakness
cases were correctly detected. This discrepancy may be due to the fact that people without any neurolog-
ical disease often have some degree of facial asymmetry at rest and while smiling. Learning the proper
threshold of normal vs abnormal facial asymmetry likely requires specialized training. Similarly, paramedics
were found to correctly classify facial weakness only 82% of the time [Nor et al., 2004]. Even among physi-
cians with neurologic training, the inter-rater reliability for certain components of the neurologic exam is less
than 60% [Hansen et al., 1994], and thus detection of common signs of stroke in the field varies substantially
[Nor et al., 2004, Josephson et al., 2006, Meyer and Lyden, 2009]. Both facial weakness and dysarthria have
poor inter-rater reliability [Josephson et al., 2006, Meyer and Lyden, 2009]. Unfortunately, such clinical exper-
tise is scarce and often not immediately accessible at the time that a stroke occurs. As a result, many patients
either fail to receive timely treatment or are ineligible for acute stroke therapy.

A technology that can accurately detect abnormal facial asymmetry could support the diagnostic capabil-
ities of non-experts and reduce delays in stroke treatment. Two major challenges of identifying pathological
facial weakness are that 1) the decision-making process is subjective and 2) the categories of “normal” and
“abnormal” are ambiguous. To deal with these challenges, we propose implementing a fuzzy inference system
(FIS) that specialises in handling vague or imprecise inputs. Additionally, the fuzzy rule base can be interpreted
by humans, allowing for direct comparison with human decision making. This work will investigate whether a
FIS can be used to detect the presence or absence of pathological facial weakness.

Section 2 will outline the models considered and Section 3 of this paper will provide an outline of the
datasets used in this investigation. Section 4 will provide an outline of the results which are discussed in more
detail in Section 5. A final conclusion and summary of this investigation is provided in Section 6.

2 Methods

The proposed system will automatically extract facial features using instance segmentation and then predict the
presence or absence of facial weakness. Details of each stage are presented in Sections 2.1 and 2.2 respectively.

2.1 Instance Segmentation of Facial Features

Three facial regions widely used by specialists when rating
facial weakness, namely the mouth, eye and nasolabial fold
(NLF) (Figure 1), are considered. The left and right portions
of each region are considered independently resulting in 6 re-
gions of interest (ROI) for each person. Mask R-CNN is used
as the basis of the instance segmentation of the facial features
[He et al., 2017]. The model is trained through transfer learn-
ing using the datasets outlined in Section 3 with a base model
of ResNet101 [He et al., 2016] using the pretrained weights de-
rived from training with the MS COCO dataset [Lin et al., 2014].
The implementation was conducted in Google Colab using
Python 3.7, a single Tesla K80 GPU, learning rate of 0.001, a batch size of 2, a minimum detection confi-
dence of 0.9 and 150 training epochs. The goal of the instance segmentation component of the system is to
accurately extract the facial features ROI to aid with the subsequent classification of whether facial weakness
is present or not present. When more than one instance of a region is predicted, only the predicted region with
the highest confidence value is considered as the model’s prediction since all images should have only one of
each region. The model’s performance will be evaluated using the Intersection over Union (IoU) metric.

Figure 1: Example annotation of the ROI.
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In this investigation the aim is to detect facial weakness in a binary manner (weakness vs no weak-
ness) in keeping with the Cincinnati Prehospital Stroke Scale (CPSS) [Kothari et al., 1999]. When facial
weakness is present it is anticipated that there will be asymmetry in the facial structure in some or all of
the ROIL. The degree of facial symmetry is captured by the ratio (Rg, Ry, Rps) of the number of pixels in
the corresponding left and right regions for the eyes, NLFs and mouth by Equation 1,where Px, and Py,

are the number of pixels in the regions on the left and right side respectively and

— (1) X€{E,N,M} The ratio is bound in the range [0,1] with perfect symmetry having

max(Py,, Px,) a value of 1 and complete asymmetry being 0. The eye, NLF and mouth ratios
are fed in to the decision making component of the system.

_ min(Px,, Px,)

2.2 Detecting facial weakness through Fuzzy Inference

A Mamdani style FIS is implemented in Python using the skfuzzy package to model the decision making of
neurologists for facial weakness detection. The membership functions and fuzzy rules are prescribed by the
investigator and the resultant model referred to as the Prescribed Fuzzy Inference System (PFIS). For each
input ratio (eye, NLF and mouth) the model has three membership functions representing “low”, “medium”
and “high” symmetry. The “medium” (or Med) membership function for each input is a Gaussian centred
around 0.76, 0.55 and 0.63 for the eye, NLF and mouth inputs respectively and with a 0.8 standard deviation.
The “low” and “high” membership functions are trapezoidal in nature and are respectively maximum (1) at 1
standard deviation below and above the Gaussian centred points mentioned above. The two output variables
represent the presence (1) or absence (0) of weakness. The consequent fuzzy sets have Sigmoid membership
functions that peaked at O and 1 respectively. These parameters for the FIS were prescribed heuristically.
The Fuzzy rule base consists of 10 rules. A single rule used OR Table 1: AND rules from the PFIS
logic to specify that “low” symmetry in any of the inputs implies ’ MF R MF Ry MF Ry, ‘ Weakness ‘
there is weakness present. All remaining 9 rules are detailed in Low Low Low 1
Table 1 and use AND logic to combine the membership func- Med Med Med
tions for the inputs Rg, Ry and Rjs corresponding to the eye, High High High
mouth and NLF ratios respectively. High High Med

The PFIS is benchmarked against a Multi-layer perceptron High Med High
(MLP) with 10 neurons in the hidden layer and trained for 1000 -

. . . . High Med Med
epochs with a batch size of 200 using binary cross-enthropy as a Med High High
loss function and the Adam Optimiser. The outputs of the PFIS Med High Med
and MLP are rounded to the nearest integer to obtain a classifi- Med Med Hieh
cation prediction of weakness (1) or no weakness (0). £

(=) fe) o) o) Neo] Reo) e}

3 Dataset

Two datasets are used in this study; the FEI face database and a facial weakness dataset. Both datasets contain
images of individual faces. The ground truth masks for the six ROI were annotated using the VGG Annotator
Tool [Dutta et al., 2016, Dutta and Zisserman, 2019]. All annotations were conducted by someone with no
clinical experience to ensure that unconscious bias was not introduced in images where facial weakness was
present. The annotator was advised where each region was located in a sample of images and completed
annotations were reviewed for quality control. Each dataset and it’s usage in this work will be detailed in
Sections 3.1 and 3.2.

3.1 FEI face database

The full FEI database contains 200 individuals photographed at various facial angles, expressions and contrast
[do Amaral and Thomaz, 2008]. Only the 200 fully front facing images are used as faces turned to one side
often have a restricted view of the ROI leading to an apparent facial asymmetry without there actually being
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asymmetry present. Given the potential use case for this system to detect facial weakness with a first responder
it is a fair pre-condition to request the model to only make decisions when the person is facing straight on in
the picture. This dataset is used to train the Mask R-CNN. To increase the quantity and diversity of the training
dataset, augmentations were applied to the images. All images were converted to greyscale and shifted a random
amount of pixels in the vertical and horizontal direction and 98% of the time an additional augmentation was
applied to the image quality (blurring, contrast adjustment, etc). All augmentations were carried out using the
imgaug Python package.

3.2 Weakness Dataset

The facial weakness dataset contains 203 open-sourced images containing faces with possible signs of weakness
and no signs of weakness. The precise pathology of the cases of apparent facial weakness are not known but
likely contain cases of stroke as well as other conditions with similar symptoms, e.g. Bell’s Palsy. The people
in the images vary in ethnicity, age, and sex. Three board-certified neurologists were asked to blindly rate
the images from 1 (very likely no weakness is present) through to 5 (very likely weakness is present). The
ground truth is taken to be the modal score of the three experts. From these ratings images were grouped in
to no weakness (<3), weakness (>3) or in determinant (=3 or split decision). Two images were categorised as
in determinant and were omitted from the remainder of the analysis. In total, 90 images were classed as no
weakness and 111 as weakness. Somes images had to be removed from the analysis as ROIs were obscured by
hair or facial angle. This left 80 no weakness images and 107 weakness images (47 left sided, 60 right sided).
This dataset is used to test the instance segmentation model and the PFIS. Additionally, 80% of the ground truth
masks are used to calculate the symmetry ratios (Equation 1) for each region and subsequently train the MLP
in the decision making task. The remaining 20% of images are used for testing the MLP with classes evenly
balanced in the train/test split.

4 Experimentation and Results

A number of experiments are proposed to evaluate each component of the system (instance segmentation and
decision making) as well as the combined system as a whole. In this section each experiment will be outlined
and the results presented immediately thereafter.

4.1 Experiment 1:Analysis of Instance Segmentation

Transfer learning is applied to the Mask R-CNN model described in Section 2.1 using the 200 “healthy” images
from the FEI dataset. The model is then evaluated using the Facial weakness dataset. Note that the model has
only been trained on the ROI (eyes, NLFs, mouth) and has not previously been exposed to cases where the
regions are asymmetric.

Table 2 shows the IoU for the facial weakness dataset when considering the images with no weakness, and
images with weakness independently. Mask R-CNN was able to accurately identify the eye and mouth regions
in cases with no weakness but had difficulty distinguishing the NLFs in all cases. The model particularly
struggled in identifying the mouth regions when weakness is present. This is likely caused by a distortion in
the shape of the mouth when weakness is present, which is significantly different from samples in the training
dataset. However, the IoU is not a perfect evaluation on the usefulness of the Mask R-CNN in identifying facial
features. An illustration of the strong predictive mask can be seen in Figure 2 (a). The ROI, in particular the
NLF, is not always clearly defined. Indeed in the case of Figure 2 (b) the NLF predicted mask only partially
overlaps with the ground truth mask. However, on closer inspection the predicted NLFs are meaningful and
may be in agreement with a different annotator. Future studies should consider multi-annotators and inter-rater
variability to get a more robust ground truth definition.
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Table 2: IoU results for Mask R-CNN in each region of interest

Data Left Eye Right Eye Left NLF Right NLF Left Mouth Right Mouth
Images: No weakness 0.74 0.73 0.54 0.54 0.77 0.74
Images: Right weakness 0.71 0.73 0.55 0.50 0.55 0.57
Images: Left weakness 0.71 0.69 0.49 0.54 0.55 0.53
(a) Raw image Predicted and ground truth masks (b) Raw image Predicted and ground truth masks

Figure 2: Illustration of the Mask R-CNN’s mask prediction (red) compared with the ground truth (green) in
(a) a case of no weakness and (b) a case of weakness.

4.2 Experiment 2: Detecting facial weakness using PFIS

The ability of the PFIS to accurately classify facial weakness is carried out in two stages. Firstly, the PFIS
will receive inputs from the Mask R-CNN output from Experiment 1 and will make a prediction for each
image. Secondly, to achieve a true analysis of the PFIS’ ability to act as a decision making system without
inheriting errors from Mask R-CNN, the ground truth masks for the facial weakness dataset are used to derive
the symmetric ratios (Equation 1) for the three input regions and the performance of the PFIS is evaluated. In
both cases the PFIS will aim to classify an image as either having weakness or no weakness.

The PFIS predicted all cases perfectly when making the decision based on ground truth masks. When
using the predicted masks from the Mask R-CNN, the model was 79% accurate and had a precision of 83%,
sensitivity of 89% and specificity of 75%. The results show that the PFIS is completely effective in its decision
making when supplied with accurate features. Even though the Mask R-CNN provided imperfect features the
PFIS was still able to achieve a very strong performance as sometimes this imperfection resulted in a desirable
outcome. Given the significance of the facial weakness decision being made it is important that good fortune
is not relied upon to make the decision and thus the results further motivate the need to enhance the instance
segmentation component of the system.

4.3 Experiment 3: Detecting facial weakness using MLP

The MLP is used as a data-driven alternative to the PFIS and will be evaluated in an analogous setup to Ex-
periment 2. The MLP obtained an accuracy of 92%, a precision of 100%, sensitivity of 90% and specificity of
100% when making a decision based on the ground truth masks while it had an accuracy of 83%, a precision
of 100%, sensitivity of 81% and specificity of 100% when making a decision based on the predicted masks
from the Mask R-CNN. The results show that the PFIS performs better when using the ground truth masks to
inform the input data. Furthermore, when predictive masks are used, the PFIS will tend to be over cautious in
its prediction compared with the MLP that would tend to have more false-negatives than false-positives. In the
context of identifying potential facial weakness it is more desirable to favour the PFIS which is more likely to
highlight potential cases for further consideration than overlook cases of facial weakness.
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4.4 Experiment 4:Explainability of the PFIS

Unlike the black box decision making of the MLP, the PFIS contains semantically meaningful information and
interpretable fuzzy rules. This experiment aims to evaluate the degree of agreement between the PFIS and an
experienced neurologist to ascertain whether or not the PFIS encodes the decision making of the expert. An
experienced neurologist was asked to comment on the relevance of the membership functions and inference
rules to clinical decision making. A sample of images with the 5 highest membership values to the membership
functions “low”, “medium” and “high” in each of the regions were blindly presented to the neurologist. The spe-
cialist was asked to rate the appropriateness of a number of statements describing each feature on a scale from
0-100 which took the format: “To what degree would you agree that the symmetry of the [eyes/mouth/NLF]
is [high/medium/low]?”. This value was scaled to the unit interval [0,1] for comparison with the membership
value of each input. This value will be referred to as the descriptor agreement value. Additionally, the specialist
was asked to comment on the relevance of each of the inference rules from the PFIS to the real world decision
making process. This qualitative analysis is designed to see how comparable the PFIS model is to the subjective

decision making process. 1 Y Y
In general, there is a significant difference be- Fres .
tween the descriptor agreement values and the corre- 05k B ‘il % ]
sponding membership values (Figure 3). However, in E
all cases, the specialist’s agreement values are closest 0 T 1 %I
to the membership values in the extreme cases when high medium low

there is either “high” symmetry or “low” symmetry in
the image. As the notion of “medium” symmetry is —

w [ | +
not well defined it is unsurprising that in each region é’ 0.5 ! E * 1
the expert’s opinion of medium symmetry is most dif- E i %
ferent from the membership values to the fuzzy set 0 —— :
. high medium low
“medium”.

The neurologist commented that the inference ' Mouth 7 ‘ +
rules used in the PFIS are clinically relevant. It is pos- 05k —_ E S
sible however that the rule “high eye symmetry" and Cﬁ:l 1 —
“high mouth symmetry" and “moderate NLF symme- 0 hi;h adiom ow
try" implies no weakness, may not be applicable in Description of symmetry

some cases. In particular, the expert noted that when Figure 3: Spread of the RMSE between the descrip-
making decisions about weakness in the upper por- (o agreement values and the values of the membership

tion of the face that eye symmetry is comprised of = gynctions for the eyes, NLFs, and mouth of the PFIS.
both the size of the eye opening and eye brow eleva-

tion; the latter is not accounted for in this current study. Future work will investigate how to extract features for
eye brow elevation from facial images and their inclusion in the decision making process for facial weakness.

5 Discussion

This work presents a proof-of-concept feature extraction and decision making system for the identification of
pathological facial weakness. The results show that facial weakness can be accurately identified by the PFIS;
particularly when accurate feature information is used in the decision making process. The findings of this
work are relevant to screening tools for stroke such as the CPSS. One significant strength of the PFIS is the
transparency of the decision making process. The neurologist noted that it is clinically relevant to characterise
symmetry in the eyes, NLF and mouth, into three distinct categories that align with the membership functions
used in the PFIS. The classification of “weakness" vs “no weakness" is clinically described as “abnormal” or
“normal"”. Moreover, neurologists naturally interpret images in terms of the degree of asymmetry rather than
the degree of symmetry as used in this work. Finally, the three descriptive categories/membership functions of

"o

“low", “medium” and “high" symmetry would traditionally be referred to as “mild", “normal" and “severe" in
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relation to asymmetry. The canonical isomorphism between these sets of naming conventions mean the findings
would hold if labelling were changed.

In comparison to a similar study [Zhuang et al., 2018] which used penalized Linear Discriminant Analysis
(pLDA)) to classify the input images as normal, left-sided weakness or right-sided weakness, the models pre-
sented in this paper appear to outperform the previous findings. In the present paper only 3 input parameters are
used in the decision making compared with the 68 coordinates of facial landmarks used in [Zhuang et al., 2018].
The input features in this work rely on the pixel area of each predicted mask. Although this resulted in good
results, it is a primitive and course approach to calculate asymmetry. A more robust approach would be to take
in to consideration the shape of the predicted masks as well as the area. A more sophisticated approach to
measuring facial symmetry will be considered in future work. As this previous study considered 3 class clas-
sification it is not appropriate to do a direct comparison with the models in this work. The distinction between
left and right sided weakness is omitted in this work as it is not required for commonly used stroke screening
tools but could provide an interesting line of investigation in future studies.

The precise pathology of facial weakness is not known in the open source image set and it likely con-
tains more conditions than just stroke; such as Bell’s Palsy. In particular, upper facial weakness, including eye
symmetry, is only applicable in a small number of stroke cases. Future work will aim to refine the modelling
approach presented in this work to facilitate the distinction between cases of stroke and other conditions that
mimic stroke. Such investigations would require the collection of novel data including a comprehensive neuro-
logical examination to determine the pathology of the facial weakness. The images used in the facial weakness
dataset contain some heterogeneity in terms of sex, age, ethnicity and facial weakness. The images also vary by
dimension and background scenes. Moreover, the faces in the images differed in size as well as mild orientation
differences. To implement the detection of facial weakness in a clinically relevant setting there are a number
of factors that also need to be considered. The models have not been exposed to images where the person is
lying down. In this scenario the facial features may become sunken backward and become more challenging
to distinguish. Future work is required to increase the quantity, diversity and realism of the training and test
datasets.

6 Conclusion

The extraction of facial features using Mask R-CNN and the subsequent detection of facial weakness by the
PFIS shows that it is feasible to accurately automate the detection of facial weakness. This decision making
is transparent, traceable and aligns with current clinical practices and expertise. The findings from this work
show that Mask R-CNN and the PFIS could be effective methods for identifying facial weakness relevant for
the early detection of stroke. Future work will investigate the use of fuzzy modelling with image and video data
of patients with known stroke.
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Video-Based Hand Pose Estimation for Abnormal Behaviour
Detection

Fiona Marshall, Shuai Zhang and Bryan Scotney
School of Computing, Ulster University

Abstract

Hand gesture recognition, using skeletal hand keypoints estimated from depth sensors, is an active field
of research. Unfortunately, many other potential hand keypoint applications are precluded by the limited range
of depth sensors offering accurate hand pose estimation. Video-based hand pose estimation offers the potential
to provide non-intrusive monitoring of hand movements. However, due to occlusions and the complex structure
of the hand, hand poses predicted from video frequently contain many erroneous keypoints, hampering the
detection and recognition of hand movements. We propose a method to significantly improve the detection of
abnormal hand movements and introduce a novel video-based dataset containing normal and abnormal hand
movements.

Keywords: activity recognition, skeletal joints, hand keypoints, data cleaning, hand pose estimation

1. Introduction

Video-based human activity recognition has been the focus of much interest over recent years and has applications in
fields as diverse as security, sports, and healthcare. Skeletal keypoints, estimated from video data using algorithms such
as OpenPose [Wei et al., 2016], can be used to create efficient activity recognition models. In addition to body
keypoints, OpenPose can estimate hand keypoints [Simon et al., 2017], shown in Figure 1, opening new possibilities
for the automatic recognition of hand movements. However, accurate hand pose estimation is generally more
challenging than body pose estimation due to the frequent occlusions of parts of the hand and the complex skeletal
structure of the hand, leading to the generation of inaccurate and often physically impossible hand poses. Hand
keypoints can be hidden from a camera’s view by other parts of the hand, body or objects held in the hand.

As OpenPose predicts keypoints independently for each frame in a video, there is a slight variation in the
predicted location of keypoints between frames even when a person remains stationary. In extreme cases, mainly when
a limb is partially occluded, the algorithm may erroneously generate sequences in which a stationary limb appears to
move, as illustrated in Figure 2. However, erroneous finger joint keypoints movement is relatively common due to the
size and occlusion of the phalanges. As fingers are frequently occluded during normal movement, unrealistic estimated
hand poses and rapid inter-frame movement are common. Applying a temporal filter to smooth keypoint locations is
an efficient way to remedy most erroneous limb movements [Han et al., 2017], but is
ineffective for finger keypoints due to the frequency of erroneous predictions.

To date, most existing research on the automatic recognition of hand movements has
been focused on the emblematic hand gestures used for human-computer interaction or sign
language interpretation [Cheng et al., 2016]. In these cases, the subject typically provides
precise gestures, helping to ensure that the hand pose is captured clearly, aiding automatic b
interpretation. Less explored are hand movements where clear hand signals are not provided, Fiéure N 1: OpenPose
such as those observed when monitoring for abnormal or agitated behaviours within the  estimates 18  body
home. We investigate whether keypoints extracted from video data, captured by an RGB  keypoints and 21 hand
camera situated at an unobtrusive distance from the subject, such as above a TV screen in ~ keypoints from video.
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Figure 2: Estimated poses of a subject with folded arms, the incorrect poses create a false impression of movement.

the living room, can provide sufficiently accurate detail to detect abnormal hand movements. We explore whether
including hand keypoints with body keypoints improves the detection of abnormal hand movements and considers
approaches for cleaning noisy hand keypoint data. Finally, we present a novel video-based dataset of settled and agitated
hand movements. The dataset, realistically unbalanced, has been collected in a simulated home environment contains
mainly settled behaviour interspersed with a small number of short periods of agitated hand movement.

2. Related Research

Representing a person’s movement by a sequence of skeletal keypoints is a widely researched activity recognition
approach [Han et al., 2017]. Hand and body keypoints can be extracted from data captured by a 3D sensor or video
camera. 3D sensors able to locate hand keypoints include the Leap Motion! Controller and Intel RealSense?. However,
both 3D sensors, when used for hand tracking, have a range of less than 60cm, rendering them unsuitable for monitoring
behaviour within a home environment. RGB cameras are widely available, non-intrusive, and provide a rich source of
data. In addition to capturing the whole body, they can provide detailed information about hand movements. 2D body
keypoints obtained from video have been shown to be as effective for activity recognition as 3D body keypoints
[Marshall et al., 2019]. While algorithms that estimate body keypoints from video have been trained on massive
datasets, there are no hand datasets with annotated keypoints of comparable size due to the difficulty of creating
annotated or synthetic hand datasets. Instead, the OpenPose hand keypoint detector employs weakly supervised learning
to train a hand keypoint detector using a small, labelled training dataset and a series of unlabelled images of a single
hand from multiple views [Simon et al., 2017]. Similar to OpenPose but faster, Google’s MediaPipe? also offers image-
based hand pose extraction. However, as MediaPipe is still in the early stages of development and subject to changes,
this study is based on OpenPose keypoints. Moreover, we expected occluded joints to present similar challenges across
all hand pose estimation models.

Dynamic hand gestures consist of hand movements that evolve over multiple frames. Whilst some recognition
approaches are based entirely on keypoint location [Nguyen et al., 2019], many approaches construct new low-level
frame-based features. Handcrafted features include fingertip angle, the distance between fingers, motion, rotation and
elevation from individual or multiple keypoints [Marin et al., 2014; De Smedt et al., 2017]. Traditional learning
approaches reduce the sequence of frames to a single feature vector using Fisher Vectors, temporal pyramids [De Smedt
et al., 2017] or neural networks [Nguyen et al., 2019]. Non-deep models used for classifying dynamic hand gestures
include Support Vector Machines (SVM) [Nguyen et al., 2019; De Smedt et al., 2017] and Random Forest [Canavan
etal., 2017]. Similar to whole-body activity recognition, deep dynamic hand movement recognition approaches include
Convolutional Neural Networks [Devineau et al., 2018], Recurrent Neural Networks [Avola et al., 2019], and Graph
Convolutional Networks [Li et al., 2019]. These deep learning approaches enable both temporal and spatial connections
to be retained. Whilst successful for hand gesture classification, these approaches have been used only with hand
keypoints captured by a 3D sensor close to the hand. Four widely used, publicly available, labelled 3D hand gesture
datasets provide 3D depth images and keypoint locations of hand gestures: [Avola et al., 2019; Boulahia et al., 2017;
Marin et al., 2014; De Smedt et al., 2017]. The datasets, created for hand gesture recognition tasks, contain precise,

' Leap Motion https://www.ultraleap.com/product/leap-motion-controller/
2 Intel RealSense: https://www.intelrealsense.com/
3 MediaPipe Hands: https://google.github.io/mediapipe/solutions/hands.html
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predetermined hand gestures, where the hand is directly in front of the sensor. In contrast to previous research, our
study focuses on recognising non-gesture hand movements symptomatic of agitation.

3. Data cleaning of estimated wrist and hand keypoint locations

Erroneous keypoint locations can result in a false prediction of movement. Figure 2 illustrates a situation where,
although the subject is stationary with their arms folded, the predicted wrist locations in frames a-c suggest movement.
Due to the high proportion of erroneous keypoints generated by the hand pose detection algorithm and the potential for
long sequences of hand and wrist occlusion, sequences of wrist and hand keypoints that erroneously suggest movement
are common and can be challenging to clean. For example, in Figure 2, it is unclear whether the true position of the
wrist corresponds to the locations predicted between the red or the blue triangles. Three approaches are considered for
identifying erroneous sequences of hand and wrist keypoints: two rules-based methods specific to sequences of hand
poses and a generic outlier detection method.

For each frame, the OpenPose body keypoint detector predicts 18 body keypoints, whilst the hand keypoint
detector predicts 21 hand keypoints (four keypoints per finger and thumb and one palm keypoint) for each hand. A
confidence score is generated for each keypoint. For a single 2D frame, f, the location of the 60 joint locations, j, is
denoted by Pr = {ps, ..., Pf 50}, in the original image coordinate space, where ps; = {xs ;,yr j,cf;} for the ;o
keypoint, and c is a confidence score in the range [0,1]. Temporal sequences of keypoints over n frames are denoted
S = {Py, P, ... B,}. All body keypoint locations, except for the wrists, are discarded. In this study, video data is captured
at 30 frames per second. All sequences are non-overlapping and of ten seconds (300 frames) duration.

As OpenPose detects hand and body pose independently for each frame, even non-occluded keypoint locations
move slightly between frames. Therefore, instead of using every keypoint in a sequence to calculate movement,
movement is considered over ten frames. Each ten-second sequence is split into 30 non-overlapping ten-frame windows
from which the largest Euclidean distance between any two keypoints in each window is calculated. Ten-frame
displacement is illustrated in Figure Sa.

ten-frame displacement of joint j =max < J (xq,j — xp, j)z + (Yo — ¥, j)z ) , V frames a and b within the window [1]

Restraint of unrealistic palm or wrist movement: OpenPose estimates wrist locations using the body detector model,
whilst the palm is estimated using the hand detection model. As the wrist and palm are closely linked physiologically,
we would expect a strong correlation between their locations and movement. Large movement of the wrist when the
palm is mainly stationary, or vice-versa, as illustrated in Figure 3, is unrealistic. When the sum of all 30 fen-frame
displacements of a wrist sequence are greater than twice that of the palm, or vice-versa, unrealistic movement is
suppressed by fixing the keypoint with the most movement to the initial frame location for the entire sequence.
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Figure 3:The difference between the extent of palm and wrist movement suggests erroneous keypoint predictions.

Replacement of unrealistic hand poses: unrealistic finger keypoint locations, such as those shown in Figure 4, are
common due to the occlusion of fingers. The physiology of the hand is used to create criteria for a realistic hand pose.
Each hand pose is checked to ensure that it fulfils all the criteria. Any poses considered to be unrealistic are removed
and imputed using linear interpolation between the frames. The four categories of unrealistic hand poses are:
a. Crooked fingers: joints within a finger are bent in different directions, as shown in Figure 4a, where the blue and
pink fingers are bent in different directions.
b. Joint angles with small angles: joints that close at an angle of less than 10° are considered unrealistic. The red finger
in Figure 4b has an unrealistic joint.
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Figure 4: Four categories of unrealistic hand poses are identified.

c. Multi-directional fingers: the direction of adjacent fingertips changes more than once. Figure 4c illustrates a
predicted hand pose where the directions of the yellow, green, blue, and pink fingertips alternate.
d. Unrealistic phalange length ratio: a phalange is more than three times the length of any corresponding phalange.
The third pink phalange in figure 4d is disproportionately longer than those in the other fingers.
If a hand pose is unrealistic according to any criteria, all the keypoints from the unrealistic hand are removed and
replaced using linear interpolation of the keypoints from adjacent frames. As dynamic information may be lost by
interpolating missing data between the remaining poses, especially in sequences with many unrealistic hand poses,
interpolated hand pose locations are adjusted to track wrist movement. If all hand poses in a sequence are considered
unrealistic, the first pose is replicated for every frame of the sequence, suppressing all hand movement. Suppressing
movement in this way is acceptable, as a moving hand is likely to be correctly estimated at some point in the sequence.

Outlier Detection: Outlier detection is widely used for signal data. Outliers are defined as keypoints more than three
scaled median absolute deviations [MAD] from the median. The horizontal and vertical keypoint locations are
considered separately. A sequence, S; 4 of n frames of the /™ keypoint is denoted S; 4 = {qyj ..., @y j}, Where ¢ can
represent the horizonal or vertical dimensions of the point p.

MAD = (median(|5j,d - median(S]-,d)D fori=12,..n [2]
Outlying hand and wrist keypoint locations are replaced using linear interpolation between adjacent frames.

A Savitzky-Golay filter (with polynomial order three and temporal window of length 7) is applied to each keypoint
to smooth the keypoint locations. The Savitzky-Golay filter was selected due to its ability to smooth noisy signals with
large frequency spans whilst maintaining the shape and height of the waveform peaks [Schafer, 2011], as is indicative
of agitated movement.

4. Machine Learning Model and Feature Creation

Twelve displacement features are created from hand and wrist keypoints to describe the subject’s movement during
each ten-second sequence to detect abnormal movement. All features are normalised in the range [0,1].

Dominant hand: As abnormal movement can occur in either hand, features are created from a single dominant hand.
The dominant hand is deemed the one that moves the most, calculated from the sum of all 30 ten-frame displacements
of each wrist. Where there is only a small amount of wrist movement (the sum of all 30 ten-frame displacements is less

than twice the distance between shoulder keypoints), the dominant hand is
Location and displacement of wrist joint

determined using the sum of ten-frame displacements of the thumb and the sum of
ten-frame displacements of the mean fingertip locations.

T

Displacement of keypoints (8 features): Displacement features are created from TN

the hand and wrist keypoints of the dominant hand. Three features are created from N )
the thirty ten-frame displacements of the mean of the 21 hand locations in each N
frame: sum of fen-frame displacements, standard deviation of ten-frame a b

displacements, largest ten-frame displacement. The sum of ten-frame displacements ¥igure 5. The n'laximunf distance
is also found for the wrist, thumb, fingertips, and palm keypoint location. A final g?ftfween keyp.m:llt lo;atl'ons over
feature, 300-frame displacement for the entire 10-second sequence, is calculated ifferent periods of time can

. . S describe joint movement. a) ten
from the largest Euclidean distance between any two keypoints in the sequence. g o000 b) 300 frames
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Figure 6. A covariance ellipse can be used to describe movement. Whilst the wrist movement of clapping is seen the
large ellipse 1c (plotted in red), no movement, as in 2¢, produces a tiny ellipse.

Figure 5 illustrates the keypoint locations of a wrist a) over a ten-frame window and b) over the entire ten-second (300
frames) sequence where wrist joint locations in each frame are shown with a blue point and displacement a red line.

Distribution of Keypoint Locations (3 features): Three covariance features are created from the wrist location,
describing the distribution of keypoint locations within a sequence: the horizontal variance of keypoint location, the
vertical variance of keypoint location, and the direction of the eigenvectors. The absolute value of direction is used to
prevent differentiation between left- and right-handed movement. Figure 6 illustrates how covariance of keypoint
locations can help detect movement. In Figures 6.1a and 6.2a, the movement of the limbs throughout the sequence is
shown. In Figures 6.1b and 6.2b, only the wrist keypoints are used to describe movement. Figure 6.1c and 6.2c show
how a covariance ellipse can describe the range and direction of movement of a keypoint. Where no movement is
detected, such as in Figure 6.2c¢, the ellipse is represented by a single point.

Variation in Confidence Scores (1 feature): Occlusion of some hand keypoints is inevitable with movement.
Therefore, confidence scores provided by the OpenPose algorithm can indicate hand movement, as changes in
confidence may occur because of occlusions. Since a low confidence score indicates occlusion and a high score
indicates non-occlusion, a confidence score that varies significantly throughout a sequence suggests hand movement.
Movement is detected by locating peaks in the average confidence scores for the fingertips and thumbs, as shown in
Figure 7. Peaks are found using the findpeaks MATLAB function (with prominence=0.4 determined empirically). The
total number of peaks detected is used as a feature.

Classification: Support Vector Machines were used to classify the behaviours, as they are suitable for use with data
containing imbalanced class distributions. Leave-one-out cross-subject validation was used. Accuracy was compared
using F1 scores due to the imbalanced classes and the importance of false negative and false positive detections of

abnormal behaviour.
true positive
(3]

F1 score = — — -
true posttwe+5(false positive+ false negative)

5. Dataset

Whilst there is a small number of RGB hand gesture datasets, we are not aware of any datasets containing natural, non-
gesture hand movements. To facilitate this study, we have collected a small dataset of settled behaviour, where subjects
are relaxing whilst watching TV, interspersed with various repetitive hand movements. Eight healthy participants were
recorded using an RGB video camera whilst seated in front of a TV for around 35 minutes. The camera was set above
the TV, directly facing the participant at approximately two metres distance. Video images were captured at 30 frames
per second. The setup is shown in Figure 8.
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Figure 8: With a camera placed above the TV screen, the subject is recorded whilst seated, watching TV. OpenPose
is used to estimate hand and body keypoints.

Participants were asked to remain seated throughout the entire recording. An audio alarm was used every three
minutes to remind participants to demonstrate a repetitive hand movement for at least ten seconds. Five types of hand
movements are studied: picking, scratching, rubbing, wringing, and clapping. The
first four movements are indicative of common types of repetitive behaviours
[Cullen et al., 2005] in people living with dementia. Clapping - a clearly defined
repetitive action - is included as a benchmark activity. The participants decided
which movement that they wanted to demonstrate on each occasion. For the
remainder of the time, participants relaxed, seated in front of the TV. Whilst
relaxed, although remaining seated, participants moved normally. Normal
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movements included rubbing the face, checking the phone, stretching, and blowing IR
the nose. No participant sat completely still whilst relaxing. The study was approved o
by the relevant Ulster University Faculty Research Ethics Filter Committee. Figure 9: Distribution of types

of behaviour in the dataset.
Estimation of body and hand keypoints: If a body keypoint is occluded,

OpenPose returns a missing value for that keypoint. If a wrist keypoint is missing, all the keypoints from the
corresponding hand will also be missing. However, if the wrist keypoint is predicted, OpenPose predicts all the
corresponding hand keypoints, regardless of whether any hand keypoints are occluded. As parts of the hand are
frequently occluded from camera view, OpenPose must regularly predict the location of unseen hand keypoints. Only
hand and upper body keypoints were used in this study.

Data Annotation: Each frame of the video data was annotated manually by the first author. Movements were divided
into four behavioural classes: settled, normal, small repetitive movements, and large repetitive movements. Small
repetitive movements are finger-only movements, including using a mobile phone, changing television channels with
remote control, rubbing fingers, and small picking movements. While the difference between types of behaviours is
incremental, dividing the behaviours into different classes is necessary for detecting abnormal behaviours. As the
subjects are recorded continuously, the data contains behaviours from the four classes and the transitions between
classes. In this study, only sequences containing ten continuous seconds of the same behaviour are considered; the
detection of abnormal hand movements from continuous data will be considered in a future study.

Keypoint location data are divided into ten-second (300 frames) sequences. Sequences of behaviour lasting less
than 10 seconds were discarded. To ensure that sequences do not contain a mixture of behaviours, additional two
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